Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Streaming Approach to the Core Vector Machine

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13589))

Included in the following conference series:

  • 379 Accesses

Abstract

The Support Vector Machine (SVM) is a widely used algorithm for batch classification with a run and memory efficient counterpart given by the Core Vector Machine (CVM). Both algorithms have nice theoretical guarantees, but are not able to handle data streams, which have to be processed instance by instance. We propose a novel approach to handle stream classification problems via an adaption of the CVM, which is also able to handle multiclass classification problems. Furthermore, we compare our Multiclass Core Vector Machine (MCCVM) approach against another existing Minimum Enclosing Ball (MEB)-based classification approach. Finally, we propose a real-world streaming dataset, which consists of changeover detection data and has only been analyzed in offline settings so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code can be found at https://github.com/foxriver76/SW-MEB-Python.

  2. 2.

    The dataset can be found on https://github.com/ValdsteiN/OBerA-Enhanced-Changeover-Detection-in-Industry-4.0-environments-with-Machine-Learning.

  3. 3.

    https://www.kaggle.com/c/GiveMeSomeCredit.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5, 914–925 (1993)

    Article  Google Scholar 

  2. Asharaf, S., Murty, M.N., Shevade, S.K.: Multiclass core vector machine. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 41–48. Association for Computing Machinery, USA (2007)

    Google Scholar 

  3. Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 801–802. Society for Industrial and Applied Mathematics, USA (2003)

    Google Scholar 

  4. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  5. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams with Practical Examples in MOA. MIT Press, Cambridge (2018)

    Book  Google Scholar 

  6. Bifet, A., Pfahringer, B., Read, J., Holmes, G.: Efficient data stream classification via probabilistic adaptive windows. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 801–806. ACM, USA (2013)

    Google Scholar 

  7. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  8. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. 40(1), 14–22 (2008)

    Article  MATH  Google Scholar 

  9. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real-time data mining of non-stationary data streams from sensor networks. Inf. Fusion 9(3), 344–353 (2008)

    Article  Google Scholar 

  10. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Networks 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  11. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  12. Heusinger, M., Raab, C., Schleif, F.M.: Passive concept drift handling via variations of learning vector quantization. NCAA 1–12 (2020)

    Google Scholar 

  13. Heusinger, M., Schleif, F.: Reactive concept drift detection using coresets over sliding windows. In: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, Canberra, Australia, 1–4 December 2020, pp. 1350–1355. IEEE (2020)

    Google Scholar 

  14. Heusinger, M., Schleif, F.-M.: Classification in non-stationary environments using coresets over sliding windows. In: Rojas, I., Joya, G., Català, A. (eds.) IWANN 2021. LNCS, vol. 12861, pp. 126–137. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85030-2_11

    Chapter  Google Scholar 

  15. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory for heterogeneous concept drift. In: Proceedings of IEEE ICDM, pp. 291–300 (2017)

    Google Scholar 

  16. Losing, V., Hammer, B., Wersing, H.: Self-adjusting memory: how to deal with diverse drift types. In: Proceedings of IJCAI 2017, pp. 4899–4903 (2017)

    Google Scholar 

  17. Miller, E., Heusinger, M., Engelmann, B.: Enhanced changeover detection in industry 4.0 environments with machine learning. Sensors 21(17), 5896 (2021)

    Google Scholar 

  18. Nathan, V., Raghvendra, S.: Accurate streaming support vector machines. CoRR abs/1412.2485 (2014). https://arxiv.org/abs/1412.2485

  19. Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020)

    Article  Google Scholar 

  20. Schleif, F.M., Tino, P.: Indefinite proximity learning: a review. Neural Comput. 27(10), 2039–2096 (2015)

    Article  MATH  Google Scholar 

  21. Straat, M., Abadi, F., Göpfert, C., Hammer, B., Biehl, M.: Statistical mechanics of on-line learning under concept drift. Entropy 20(10), 775 (2018)

    Article  Google Scholar 

  22. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the 7th ACM SIGKDD, KDD 2001, pp. 377–382. ACM (2001)

    Google Scholar 

  23. Szedmak, S., Shawe-Taylor, J.: Multiclass learning at one-class complexity. Project report (2005). https://eprints.soton.ac.uk/261157/

  24. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: fast SVM training on very large data sets. JMLR 6(13), 363–392 (2005)

    MATH  Google Scholar 

  25. Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  26. Wang, Y., Li, Y., Tan, K.L.: Coresets for minimum enclosing balls over sliding windows. In: Proceedings of the 25th ACM SIGKDD, KDD 2019, pp. 314–323. Association for Computing Machinery, USA (2019)

    Google Scholar 

Download references

Acknowledgement

We are thankful for support in the mFUND program of the BMVI, project FlowPro, grant number 19F2128B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Heusinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heusinger, M., Schleif, FM. (2023). A Streaming Approach to the Core Vector Machine. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13589. Springer, Cham. https://doi.org/10.1007/978-3-031-23480-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23480-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23479-8

  • Online ISBN: 978-3-031-23480-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics