Abstract
The Support Vector Machine (SVM) is a widely used algorithm for batch classification with a run and memory efficient counterpart given by the Core Vector Machine (CVM). Both algorithms have nice theoretical guarantees, but are not able to handle data streams, which have to be processed instance by instance. We propose a novel approach to handle stream classification problems via an adaption of the CVM, which is also able to handle multiclass classification problems. Furthermore, we compare our Multiclass Core Vector Machine (MCCVM) approach against another existing Minimum Enclosing Ball (MEB)-based classification approach. Finally, we propose a real-world streaming dataset, which consists of changeover detection data and has only been analyzed in offline settings so far.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code can be found at https://github.com/foxriver76/SW-MEB-Python.
- 2.
The dataset can be found on https://github.com/ValdsteiN/OBerA-Enhanced-Changeover-Detection-in-Industry-4.0-environments-with-Machine-Learning.
- 3.
References
Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5, 914–925 (1993)
Asharaf, S., Murty, M.N., Shevade, S.K.: Multiclass core vector machine. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 41–48. Association for Computing Machinery, USA (2007)
Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 801–802. Society for Industrial and Applied Mathematics, USA (2003)
Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22
Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams with Practical Examples in MOA. MIT Press, Cambridge (2018)
Bifet, A., Pfahringer, B., Read, J., Holmes, G.: Efficient data stream classification via probabilistic adaptive windows. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 801–806. ACM, USA (2013)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)
Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. 40(1), 14–22 (2008)
Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real-time data mining of non-stationary data streams from sensor networks. Inf. Fusion 9(3), 344–353 (2008)
Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Networks 22(10), 1517–1531 (2011)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Heusinger, M., Raab, C., Schleif, F.M.: Passive concept drift handling via variations of learning vector quantization. NCAA 1–12 (2020)
Heusinger, M., Schleif, F.: Reactive concept drift detection using coresets over sliding windows. In: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, Canberra, Australia, 1–4 December 2020, pp. 1350–1355. IEEE (2020)
Heusinger, M., Schleif, F.-M.: Classification in non-stationary environments using coresets over sliding windows. In: Rojas, I., Joya, G., Català, A. (eds.) IWANN 2021. LNCS, vol. 12861, pp. 126–137. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85030-2_11
Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory for heterogeneous concept drift. In: Proceedings of IEEE ICDM, pp. 291–300 (2017)
Losing, V., Hammer, B., Wersing, H.: Self-adjusting memory: how to deal with diverse drift types. In: Proceedings of IJCAI 2017, pp. 4899–4903 (2017)
Miller, E., Heusinger, M., Engelmann, B.: Enhanced changeover detection in industry 4.0 environments with machine learning. Sensors 21(17), 5896 (2021)
Nathan, V., Raghvendra, S.: Accurate streaming support vector machines. CoRR abs/1412.2485 (2014). https://arxiv.org/abs/1412.2485
Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020)
Schleif, F.M., Tino, P.: Indefinite proximity learning: a review. Neural Comput. 27(10), 2039–2096 (2015)
Straat, M., Abadi, F., Göpfert, C., Hammer, B., Biehl, M.: Statistical mechanics of on-line learning under concept drift. Entropy 20(10), 775 (2018)
Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the 7th ACM SIGKDD, KDD 2001, pp. 377–382. ACM (2001)
Szedmak, S., Shawe-Taylor, J.: Multiclass learning at one-class complexity. Project report (2005). https://eprints.soton.ac.uk/261157/
Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: fast SVM training on very large data sets. JMLR 6(13), 363–392 (2005)
Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)
Wang, Y., Li, Y., Tan, K.L.: Coresets for minimum enclosing balls over sliding windows. In: Proceedings of the 25th ACM SIGKDD, KDD 2019, pp. 314–323. Association for Computing Machinery, USA (2019)
Acknowledgement
We are thankful for support in the mFUND program of the BMVI, project FlowPro, grant number 19F2128B.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Heusinger, M., Schleif, FM. (2023). A Streaming Approach to the Core Vector Machine. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13589. Springer, Cham. https://doi.org/10.1007/978-3-031-23480-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-23480-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23479-8
Online ISBN: 978-3-031-23480-4
eBook Packages: Computer ScienceComputer Science (R0)