Nothing Special   »   [go: up one dir, main page]

Skip to main content

Voxel-Based 3D Shape Segmentation Using Deep Volumetric Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1409 Accesses

Abstract

3D shape segmentation serves as the base of semantic shape analysis and becomes a hot research topic in recent years. Many segmentation methods are devised by feeding surface based geometric descriptors into a deep neural network. Most of the existing approaches assume that the surface variation information is rich enough to characterize a 3D shape, and thus perform all the constituent steps on the triangle mesh representation. However, triangle based learning networks suffer from how to define the convolutional operator, unlike the trivial situation of regular pixels or voxels. Observing that the volumetric representation is the dual of the surface representation, we design a volumetric encoder-decoder architecture, named V-SegNet, which works by lifting surface based geometric features to the enclosed voxels and then training a deep volumetric network. In the inference stage, we build the voxelization of a given 3D object, then predict the label for each voxel lying in the interior of the given shape, and finally generate the labeling information for each triangle face. The experimental results show that V-SegNet, working in a surface-volume-surface fashion, further improves the segmentation performance.

Y. Liu and W. Long—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milano, F., Loquercio, A., Rosinol, A., Scaramuzza, D., Carlone, L.: Primal-dual mesh convolutional neural networks. In: Conference on Neural Information Processing Systems, pp. 952–963 (2020)

    Google Scholar 

  2. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  3. Lim, J.J., Khosla, A., Torralba, A.: FPM: fine pose parts-based model with 3D CAD models. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 478–493. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_31

    Chapter  Google Scholar 

  4. Huang, H., Kalogerakis, E., Yumer, E., Mech, R.: Shape synthesis from sketches via procedural models and convolutional networks. IEEE Trans. Vis. Comput. Graph. 23(8), 2003–2013 (2016)

    Article  Google Scholar 

  5. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29, 1–12 (2010)

    Article  Google Scholar 

  6. Guo, K., Zou, D., Chen, X.: 3D mesh labeling via deep convolutional neural networks. ACM Trans. Graph. 35(1), 1–12 (2015)

    Article  Google Scholar 

  7. Wang, Z., Lu, F.: VoxSegNet: volumetric CNNs for semantic part segmentation of 3D shapes. IEEE Trans. Vis. Comput. Graph. 26(9), 2919–2930 (2019)

    Article  Google Scholar 

  8. Shu, Z., Qi, C., Xin, S., Hu, C., Wang, L., Zhang, Y., Liu, L.: Unsupervised 3D shape segmentation and co-segmentation via deep learning. Comput. Aid. Geom. Des. 43, 39–52 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  10. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)

    Article  Google Scholar 

  11. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3779–3788 (2017)

    Google Scholar 

  12. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  13. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  14. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  15. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36(4), 1–11 (2017)

    Google Scholar 

  16. Yu, F., Liu, K., Zhang, Y., Zhu, C., Xu, K.: PartNet: a recursive part decomposition network for fine-grained and hierarchical shape segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9491–9500 (2019)

    Google Scholar 

  17. Hu, S.M., Liu, Z.N., Guo, M.H., Cai, J.X., Huang, J., Mu, T.J., Martin, R.R.: Subdivision-based mesh convolution networks. ACM Trans. Graph. 41(3), 1–16 (2022)

    Article  Google Scholar 

  18. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: MeshCNN: a network with an edge. ACM Trans. Graph. 38(4), 1–12 (2019)

    Article  Google Scholar 

  19. Lahav, A., Tal, A.: MeshWalker: deep mesh understanding by random walks. ACM Trans. Graph. 39(6), 1–13 (2020)

    Article  Google Scholar 

  20. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  21. Moon, G., Chang, J.Y., Lee, K.M.: V2V-PoseNet: voxel-to-voxel prediction network for accurate 3D hand and human pose estimation from a single depth map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5088 (2018)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  25. Wang, Y., Gong, M., Wang, T., Cohen-Or, D., Zhang, H., Chen, B.: Projective analysis for 3D shape segmentation. ACM Trans. Graph. 32(6), 1–12 (2013)

    Article  Google Scholar 

  26. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3), 1–12 (2009)

    Article  Google Scholar 

  27. Wang, Y., Asafi, S., Van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. ACM Trans. Graph. 31(6), 1–10 (2012)

    Article  Google Scholar 

  28. Hu, R., Fan, L., Liu, L.: Co-segmentation of 3D shapes via subspace clustering. Comput. Graph. Forum 31(5), 1703–1713 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61872321, 62172356, 61972350), Natural Science Foundation of Zhejiang Province (LY22F020026), and Ningbo Major Special Projects of the “Science and Technology Innovation 2025” (2020Z005, 2020Z007, 2021Z012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Long, W., Shu, Z., Yi, S., Xin, S. (2022). Voxel-Based 3D Shape Segmentation Using Deep Volumetric Convolutional Neural Networks. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics