Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-task Swin Transformer for Motion Artifacts Classification and Cardiac Magnetic Resonance Image Segmentation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Abstract

Cardiac Magnetic Resonance Imaging is commonly used for the assessment of the cardiac anatomy and function. The delineations of left and right ventricle blood pools and left ventricular myocardium are important for the diagnosis of cardiac diseases. Unfortunately, the movement of a patient during the CMR acquisition procedure may result in motion artifacts appearing in the final image. Such artifacts decrease the diagnostic quality of CMR images and force redoing of the procedure. In this paper, we present a Multi-task Swin UNEt TRansformer network for simultaneous solving of two tasks in the CMRxMotion challenge: CMR segmentation and motion artifacts classification. We utilize both segmentation and classification as a multi-task learning approach which allows us to determine the diagnostic quality of CMR and generate masks at the same time. CMR images are classified into three diagnostic quality classes, whereas, all samples with non-severe motion artifacts are being segmented. Ensemble of five networks trained using 5-Fold Cross-validation achieves segmentation performance of DICE coefficient of 0.871 and classification accuracy of 0.595.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Khalil, Y., Amirrajab, S., Pluim, J., Breeuwer, M.: Late fusion U-Net with GAN-based augmentation for generalizable cardiac MRI segmentation. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 360–373. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_39

    Chapter  Google Scholar 

  2. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  3. Consortium, M., et al.: MONAI: medical open network for AI (2020)

    Google Scholar 

  4. Dobrescu, A., Giuffrida, M.V., Tsaftaris, S.A.: Doing more with less: a multitask deep learning approach in plant phenotyping. Front. Plant Sci. 11, 141 (2020)

    Article  Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704 (2021)

  7. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. arXiv preprint arXiv:2201.01266 (2022)

  8. Kossaifi, J., Bulat, A., Tzimiropoulos, G., Pantic, M.: T-net: parametrizing fully convolutional nets with a single high-order tensor. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7822–7831 (2019)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  10. Lima, J.A., Desai, M.Y.: Cardiovascular magnetic resonance imaging: current and emerging applications. J. Am. Coll. Cardiol. 44(6), 1164–1171 (2004)

    Article  Google Scholar 

  11. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  12. Ottom, M.A., Rahman, H.A., Dinov, I.D.: Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE J. Transl. Eng. Health Med. 10, 1–8 (2022). Art no. 1800508. https://doi.org/10.1109/JTEHM.2022.3176737

  13. Płotka, S., et al.: BabyNet: residual transformer module for birth weight prediction on fetal ultrasound video. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 350–359. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_34

    Chapter  Google Scholar 

  14. Queirós, S.: Right ventricular segmentation in multi-view cardiac MRI using a unified U-net model. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 287–295. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_31

    Chapter  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Smith, T.B.: MRI artifacts and correction strategies. Imaging Med. 2(4), 445 (2010)

    Article  Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Wang, S., et al.: The extreme cardiac MRI analysis challenge under respiratory motion (cmrxmotion). arXiv preprint arXIv: 2210.06385 (2022)

  19. White, H.D., Norris, R.M., Brown, M.A., Brandt, P.W., Whitlock, R., Wild, C.J.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1), 44–51 (1987)

    Article  Google Scholar 

  20. Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement Sano No 857533 and the International Research Agendas programme of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal K. Grzeszczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grzeszczyk, M.K., Płotka, S., Sitek, A. (2022). Multi-task Swin Transformer for Motion Artifacts Classification and Cardiac Magnetic Resonance Image Segmentation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics