Abstract
Cardiac Magnetic Resonance Imaging is commonly used for the assessment of the cardiac anatomy and function. The delineations of left and right ventricle blood pools and left ventricular myocardium are important for the diagnosis of cardiac diseases. Unfortunately, the movement of a patient during the CMR acquisition procedure may result in motion artifacts appearing in the final image. Such artifacts decrease the diagnostic quality of CMR images and force redoing of the procedure. In this paper, we present a Multi-task Swin UNEt TRansformer network for simultaneous solving of two tasks in the CMRxMotion challenge: CMR segmentation and motion artifacts classification. We utilize both segmentation and classification as a multi-task learning approach which allows us to determine the diagnostic quality of CMR and generate masks at the same time. CMR images are classified into three diagnostic quality classes, whereas, all samples with non-severe motion artifacts are being segmented. Ensemble of five networks trained using 5-Fold Cross-validation achieves segmentation performance of DICE coefficient of 0.871 and classification accuracy of 0.595.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al Khalil, Y., Amirrajab, S., Pluim, J., Breeuwer, M.: Late fusion U-Net with GAN-based augmentation for generalizable cardiac MRI segmentation. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 360–373. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_39
Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)
Consortium, M., et al.: MONAI: medical open network for AI (2020)
Dobrescu, A., Giuffrida, M.V., Tsaftaris, S.A.: Doing more with less: a multitask deep learning approach in plant phenotyping. Front. Plant Sci. 11, 141 (2020)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704 (2021)
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. arXiv preprint arXiv:2201.01266 (2022)
Kossaifi, J., Bulat, A., Tzimiropoulos, G., Pantic, M.: T-net: parametrizing fully convolutional nets with a single high-order tensor. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7822–7831 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Lima, J.A., Desai, M.Y.: Cardiovascular magnetic resonance imaging: current and emerging applications. J. Am. Coll. Cardiol. 44(6), 1164–1171 (2004)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Ottom, M.A., Rahman, H.A., Dinov, I.D.: Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE J. Transl. Eng. Health Med. 10, 1–8 (2022). Art no. 1800508. https://doi.org/10.1109/JTEHM.2022.3176737
Płotka, S., et al.: BabyNet: residual transformer module for birth weight prediction on fetal ultrasound video. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 350–359. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_34
Queirós, S.: Right ventricular segmentation in multi-view cardiac MRI using a unified U-net model. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 287–295. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_31
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Smith, T.B.: MRI artifacts and correction strategies. Imaging Med. 2(4), 445 (2010)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, S., et al.: The extreme cardiac MRI analysis challenge under respiratory motion (cmrxmotion). arXiv preprint arXIv: 2210.06385 (2022)
White, H.D., Norris, R.M., Brown, M.A., Brandt, P.W., Whitlock, R., Wild, C.J.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1), 44–51 (1987)
Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)
Acknowledgements
This work is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement Sano No 857533 and the International Research Agendas programme of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grzeszczyk, M.K., Płotka, S., Sitek, A. (2022). Multi-task Swin Transformer for Motion Artifacts Classification and Cardiac Magnetic Resonance Image Segmentation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-23443-9_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23442-2
Online ISBN: 978-3-031-23443-9
eBook Packages: Computer ScienceComputer Science (R0)