Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

The segmentation of the fetal cerebral cortex from magnetic resonance imaging (MRI) is an important tool for neurobiological research about the developing human brain. Manual segmentation is difficult and time-consuming. Limited image resolution and partial volume effects introduce errors and labeling noise when attempting to automate the process through machine learning. The significant morphological changes observed during brain growth pose additional challenges for learning-based image segmentation methods, which may drastically increase the amount of necessary training data. In this paper, we propose a framework to learn from noisy labels by using additional regularization via shape priors for the accurate segmentation of the cortical gray matter (CGM) in 3D. Firstly, we introduce a novel structure consistency loss based on persistent homology analysis of the cortical topology. Secondly, a regularization loss term is proposed by integrating assumptions about the cortical thickness within each sample. Our experiments on the developing human connectome project (dHCP) dataset show that our method can predict accurate CGM segmentation learned from noisy labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code is available at: https://github.com/smilell/FetalTopology.

  2. 2.

    Although simplicial complex is widely used in general topology analysis [30], modeling the images by a cubical complex will simplify the calculation due to the inherent cubical structure of the image [27].

References

  1. Alansary, A., et al.: PVR: patch-to-volume reconstruction for large area motion correction of fetal MRI. IEEE Trans. Med. Imaging 36(10), 2031–2044 (2017)

    Article  Google Scholar 

  2. Arimitsu, T., Shinohara, N., Minagawa, Y., Hoshino, E., Hata, M., Takahashi, T.: Differential age-dependent development of inter-area brain connectivity in term and preterm neonates. Pediatr. Res. 92, 1017–1025 (2022)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Casey, B., Giedd, J.N., Thomas, K.M.: Structural and functional brain development and its relation to cognitive development. Biol. Psychol. 54(1–3), 241–257 (2000)

    Article  Google Scholar 

  5. Clough, J.R., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.P.: A topological loss function for deep-learning based image segmentation using persistent homology. arXiv preprint arXiv:1910.01877 (2019)

  6. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  7. Dou, H., et al.: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI. IEEE Trans. Med. Imaging 40(4), 1123–1133 (2020)

    Article  Google Scholar 

  8. Edelsbrunner, H., Harer, J., et al.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haft-Javaherian, M., Villiger, M., Schaffer, C.B., Nishimura, N., Golland, P., Bouma, B.E.: A topological encoding convolutional neural network for segmentation of 3D multiphoton images of brain vasculature using persistent homology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 990–991 (2020)

    Google Scholar 

  11. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  12. Isensee, F., et al.: nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  13. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  14. Kaji, S., Sudo, T., Ahara, K.: Cubical ripser: software for computing persistent homology of image and volume data. arXiv preprint arXiv:2005.12692 (2020)

  15. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  16. Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 77–89 (2019)

    Article  Google Scholar 

  17. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  18. Li, L., et al.: CAS-Net: conditional atlas generation and brain segmentation for fetal MRI. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_21

    Chapter  Google Scholar 

  19. Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)

    Article  Google Scholar 

  20. Makropoulos, A., et al.: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173, 88–112 (2018)

    Article  Google Scholar 

  21. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8(1), 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  22. Price, A.N., et al.: The developing human connectome project (dHCP): fetal acquisition protocol. In: ISMRM Annual Meeting & Exhibition. vol. 27 (2019)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Rousseau, F., et al.: Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad. Radiol. 13(9), 1072–1081 (2006)

    Article  Google Scholar 

  25. Serag, A., et al.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 59(3), 2255–2265 (2012)

    Article  Google Scholar 

  26. Sinclair, M., et al.: Atlas-ISTN: joint segmentation, registration and atlas construction with image-and-spatial transformer networks. Med. Image Anal. 78, 102383 (2022)

    Article  Google Scholar 

  27. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II, pp. 91–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23175-9_7

  28. Wright, R., et al.: LSTM spatial co-transformer networks for registration of 3D fetal US and MR brain images. In: Melbourne, A., et al. (eds.) PIPPI/DATRA -2018. LNCS, vol. 11076, pp. 149–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00807-9_15

    Chapter  Google Scholar 

  29. Wu, J., et al.: Age-specific structural fetal brain atlases construction and cortical development quantification for Chinese population. Neuroimage 241, 118412 (2021)

    Article  Google Scholar 

  30. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Data in this work were provided by ERC Grant Agreement no. [319456]. We are grateful to the families who generously supported this trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 944 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L. et al. (2022). Fetal Cortex Segmentation with Topology and Thickness Loss Constraints. In: Baxter, J.S.H., et al. Ethical and Philosophical Issues in Medical Imaging, Multimodal Learning and Fusion Across Scales for Clinical Decision Support, and Topological Data Analysis for Biomedical Imaging. EPIMI ML-CDS TDA4BiomedicalImaging 2022 2022 2022. Lecture Notes in Computer Science, vol 13755. Springer, Cham. https://doi.org/10.1007/978-3-031-23223-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23223-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23222-0

  • Online ISBN: 978-3-031-23223-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics