Abstract
The segmentation of the fetal cerebral cortex from magnetic resonance imaging (MRI) is an important tool for neurobiological research about the developing human brain. Manual segmentation is difficult and time-consuming. Limited image resolution and partial volume effects introduce errors and labeling noise when attempting to automate the process through machine learning. The significant morphological changes observed during brain growth pose additional challenges for learning-based image segmentation methods, which may drastically increase the amount of necessary training data. In this paper, we propose a framework to learn from noisy labels by using additional regularization via shape priors for the accurate segmentation of the cortical gray matter (CGM) in 3D. Firstly, we introduce a novel structure consistency loss based on persistent homology analysis of the cortical topology. Secondly, a regularization loss term is proposed by integrating assumptions about the cortical thickness within each sample. Our experiments on the developing human connectome project (dHCP) dataset show that our method can predict accurate CGM segmentation learned from noisy labels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code is available at: https://github.com/smilell/FetalTopology.
- 2.
References
Alansary, A., et al.: PVR: patch-to-volume reconstruction for large area motion correction of fetal MRI. IEEE Trans. Med. Imaging 36(10), 2031–2044 (2017)
Arimitsu, T., Shinohara, N., Minagawa, Y., Hoshino, E., Hata, M., Takahashi, T.: Differential age-dependent development of inter-area brain connectivity in term and preterm neonates. Pediatr. Res. 92, 1017–1025 (2022)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Casey, B., Giedd, J.N., Thomas, K.M.: Structural and functional brain development and its relation to cognitive development. Biol. Psychol. 54(1–3), 241–257 (2000)
Clough, J.R., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.P.: A topological loss function for deep-learning based image segmentation using persistent homology. arXiv preprint arXiv:1910.01877 (2019)
Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2
Dou, H., et al.: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI. IEEE Trans. Med. Imaging 40(4), 1123–1133 (2020)
Edelsbrunner, H., Harer, J., et al.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)
Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)
Haft-Javaherian, M., Villiger, M., Schaffer, C.B., Nishimura, N., Golland, P., Bouma, B.E.: A topological encoding convolutional neural network for segmentation of 3D multiphoton images of brain vasculature using persistent homology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 990–991 (2020)
Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32 (2019)
Isensee, F., et al.: nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)
Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)
Kaji, S., Sudo, T., Ahara, K.: Cubical ripser: software for computing persistent homology of image and volume data. arXiv preprint arXiv:2005.12692 (2020)
Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)
Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 77–89 (2019)
Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)
Li, L., et al.: CAS-Net: conditional atlas generation and brain segmentation for fetal MRI. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_21
Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)
Makropoulos, A., et al.: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173, 88–112 (2018)
Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8(1), 1–14 (2021)
Price, A.N., et al.: The developing human connectome project (dHCP): fetal acquisition protocol. In: ISMRM Annual Meeting & Exhibition. vol. 27 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rousseau, F., et al.: Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad. Radiol. 13(9), 1072–1081 (2006)
Serag, A., et al.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 59(3), 2255–2265 (2012)
Sinclair, M., et al.: Atlas-ISTN: joint segmentation, registration and atlas construction with image-and-spatial transformer networks. Med. Image Anal. 78, 102383 (2022)
Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II, pp. 91–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23175-9_7
Wright, R., et al.: LSTM spatial co-transformer networks for registration of 3D fetal US and MR brain images. In: Melbourne, A., et al. (eds.) PIPPI/DATRA -2018. LNCS, vol. 11076, pp. 149–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00807-9_15
Wu, J., et al.: Age-specific structural fetal brain atlases construction and cortical development quantification for Chinese population. Neuroimage 241, 118412 (2021)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)
Acknowledgements
Data in this work were provided by ERC Grant Agreement no. [319456]. We are grateful to the families who generously supported this trial.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, L. et al. (2022). Fetal Cortex Segmentation with Topology and Thickness Loss Constraints. In: Baxter, J.S.H., et al. Ethical and Philosophical Issues in Medical Imaging, Multimodal Learning and Fusion Across Scales for Clinical Decision Support, and Topological Data Analysis for Biomedical Imaging. EPIMI ML-CDS TDA4BiomedicalImaging 2022 2022 2022. Lecture Notes in Computer Science, vol 13755. Springer, Cham. https://doi.org/10.1007/978-3-031-23223-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-23223-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23222-0
Online ISBN: 978-3-031-23223-7
eBook Packages: Computer ScienceComputer Science (R0)