Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Learning-Enhanced MHC-II Presentation Prediction and Peptidome Deconvolution

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Abstract

Antigen-presenting cells can elicit a CD4\(^+\) T cell response by displaying foreign peptides on the surface. Identifying such peptides requires robust prediction of the binding and presentation corresponding to peptides and major histocompatibility complexes class II (MHC-II) molecules. However, numerous experimental data suffer from inexact supervision, and the open conformation of MHC-II molecules leads to a complex peptide binding pattern. Though current prediction methods have significantly pushed the development of cancer vaccines and immunotherapies, an urgent desire for better approaches still exists. We practice the powerful multi-head self-attention technique for MHC-II-restricted peptidome deconvolution and antigen presentation prediction problems. According to binding motifs reflected by eluted ligands, the novel expert voting-based deconvolution strategy ensures a reliable MHC-II assignment. Driven by massive trusty annotated peptidome data, our method overwhelms the start-of-the-art MHC-II presentation prediction method, NetMHCIIpan4.0, on two independent single allelic datasets. All these results have demonstrated that our method can boost the performance of MHC-II presentation prediction and peptidome deconvolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rock, K.L., Reits, E., Neefjes, J.: Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 37, 724–737 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Unanue, E.R., Turk, V., Neefjes, J.: Variations in MHC class II antigen processing and presentation in health and disease. Annu. Rev. Immunol. 34, 265–297 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Barra, C., et al.: Footprints of antigen processing boost MHC class II natural ligand predictions. Genome Med. 10, 84 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alspach, E., et al.: MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696-+ (2019)

    Google Scholar 

  5. Reynisson, B., Alvarez, B., Paul, S., Peters, B., Nielsen, M.: NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48, W449–W454 (2020)

    Google Scholar 

  6. Alvarez, B., et al.: NNAlign_MA; MHC peptidome deconvolution for accurate MHC binding Motif characterization and improved T-cell epitope predictions. Mol. Cell Proteomics 18, 2459–2477 (2019)

    Google Scholar 

  7. Cheng, J., Bendjama, K., Rittner, K., Malone, B.: BERTMHC: improved MHC-peptide class II interaction prediction with transformer and multiple instance learning. Bioinformatics 37(22), 4172–4179 (2021)

    Google Scholar 

  8. Racle, J., et al.: Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37, 1283–1286 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. Chen, B., et al.: Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 37, 1332–1343 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. UniProt, C.: UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021)

    Article  Google Scholar 

  11. Garde, C., et al.: Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data. Immunogenetics 71(7), 445–454 (2019). https://doi.org/10.1007/s00251-019-01122-z

    Article  PubMed  Google Scholar 

  12. Zhou, Z.-H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5, 44–53 (2018)

    Article  Google Scholar 

  13. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, vol. 3, no. 2, p. 896 (2013)

    Google Scholar 

  14. Andreatta, M., Alvarez, B., Nielsen, M.: GibbsCluster: unsupervised clustering and alignment of peptide sequences. Nucleic Acids Res. 45, W458–W463 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andreatta, M., et al.: An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics 34, 1522–1528 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. Paul, S., et al.: Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system. Plos Comput. Biol. 16, e1007757 (2020)

    Google Scholar 

  17. Wells, D.K., et al.: Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818-+ (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the National Science Foundation of China(Grant No. 62173204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, J., Liu, M. (2022). Deep Learning-Enhanced MHC-II Presentation Prediction and Peptidome Deconvolution. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics