Abstract
In this paper, we discuss an approach for determining the feasibility of a polyhedron defined by a system of Binary Two Variable Per Inequality (BTVPI) constraints. A constraint of the form: \(a_i\cdot x_i+a_j \cdot x_j \ge b_{ij}\) is called a BTVPI constraint, if \(a_i,a_j \in \{0,1,-1,2,-2\}\) and \(b_{ij} \in \mathbb {Z}\). These constraints find applications in a number of domains, including scheduling and abstract interpretation. Our algorithm is based on a rewrite version of the well-known Fourier-Motzkin elimination procedure for linear programs. We show that our algorithm converges in polynomial time and is faster than all known algorithms for this class of problems.
This research was made possible by the NASA Established Program to Stimulate Competitive Research, Grant # 80NSSC22M0027.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory. Prentice-Hall, Algorithms and Applications (1993)
Àlvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic space. Electronic Colloquium on Computational Complexity (ECCC), vol. 3, no. 39 (1996). https://doi.org/10.1007/PL00001603
Aspvall, B., Shiloach, Y.: A fast algorithm for solving systems of linear equations with two variables per equation. Linear Algebra Appl. 34, 117–124 (1980)
Chandrasekaran, R., Subramani, K.: A combinatorial algorithm for Horn programs. Discret. Optim. 10, 85–101 (2013)
Chandru, V., Hooker, J.N.: Optimization methods for logical inference. Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc. (1999)
Cohen, E., Meggido, N.: Improved algorithms for linear inequalities with two variables per inequality. SIAM J. Comput. 23(6), 1313–1347 (1994)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge, MA (2009)
CPLEX Manual. IBM ILOG CPLEX Optimization Studio V12.8.0 Documentation (2017)
Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton, NJ (1963)
Dantzig, G.B., Eaves, B.C.: Fourier-motzkin elimination and its dual. J. Comb. Theor. (A) 14, 288–297 (1973)
Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristics for improving network partitions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181 (1982)
Gallo, G., Pallottino, S.: Shortest path algorithms. Ann. Oper. Res. 13, 1–79 (1988)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)
Hochbaum, D.S., (Seffi) Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192 (1994)
Karmarkar, N.K.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pp. 302–311 (1984)
Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_9
Luyo, L.E.F., Agra, A., Figueiredo, R., Anaya, E.O.: Mixed integer formulations for a routing problem with information collection in wireless networks. Eur. J. Oper. Res. 280(2), 621–638 (2020)
Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput. 19(1), 31–100 (2006)
Nelson, C.G.: An \(n^o( \log n)\) algorithm for the two-variable-per-constraint linear program satisfiability problem. Technical Report Technical Note STA, Stanford University, Computer Science Department, pp. 78–689 (1978)
Gurobi Optimization. Gurobi optimizer reference manual4. http://www.gurobi.com (2014)
Revesz, P.Z.: Tightened transitive closure of integer addition constraints. In: Symposium on Abstraction, Reformulation, and Approximation (SARA), pp. 136–142 (2009)
Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. PACMPL 3(POPL), 1–30 (2019)
Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)
Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986)
Veinott, A.F., Dantzig, G.B.: Integral extreme points. SIAM Rev. 10, 371–372 (1968)
Veinott, A.F., LiCalzi, M.: Subextremal functions and lattice programming, unpublished manuscript (1992)
Vollmer, H.: Introduction to Circuit Complexity. Springer (1999). https://doi.org/10.1007/978-3-662-03927-4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wojciechowski, P., Subramani, K. (2023). A Faster Algorithm for Determining the Linear Feasibility of Systems of BTVPI Constraints. In: Gąsieniec, L. (eds) SOFSEM 2023: Theory and Practice of Computer Science. SOFSEM 2023. Lecture Notes in Computer Science, vol 13878. Springer, Cham. https://doi.org/10.1007/978-3-031-23101-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-23101-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23100-1
Online ISBN: 978-3-031-23101-8
eBook Packages: Computer ScienceComputer Science (R0)