Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multi-task Mobile Crowdsensing Scheme with Conditional Privacy Preserving for Vehicle Networks

  • Conference paper
  • First Online:
Emerging Information Security and Applications (EISA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1641))

Abstract

Mobile crowdsensing recruits a group of users and utilizes their sensing devices to accomplish the sensing task. It can offer a flexible and scalable sensing paradigm with low deploying costs. As the development of vehicle networks, many works in the literature have investigated how to use vehicles as the sensing units for mobile crowdsensing. However, the majority of these works suffer some limitations. First, they can either achieve privacy preserving or supervision, but not both. Second, they mainly consider a single sensing task and overlook the management of users’ reputations across multiple tasks. To address these limitations, we propose a multi-task mobile crowdsensing scheme with conditional privacy preserving for vehicle networks. In our proposed scheme, the privacy preserving requirement and the supervision requirement can be harmonized, achieving a property called conditional privacy preserving. Moreover, each vehicle can participate in multiple sensing tasks at the same time. Specifically, privacy protection covers identity privacy, location privacy and reputation privacy simultaneously. And the reputation center does not need to store any internal information (e.g. random numbers or ephemeral keys) when updating the vehicles’ pseudonyms, reducing the risks of Denial-of-Service (DoS) attacks. Therefore, it provides a more secure and practical solution for mobile crowdsensing. Security analyses prove that our scheme achieves the desirable security requirements, such as correctness, conditional privacy preserving and authentication. And efficiency analyses demonstrate that our scheme can be used efficiently in multi-task mobile crowdsensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  2. Chen, X., et al.: PAS: prediction-based actuation system for city-scale ridesharing vehicular mobile crowdsensing. IEEE Internet Things J. 7(5), 3719–3734 (2020)

    Article  Google Scholar 

  3. Huang, C., Lu, R., Choo, K.-K.R.: Vehicular fog computing: architecture, use case, and security and forensic challenges. IEEE Commun. Mag. 55(11), 105–111 (2017)

    Article  Google Scholar 

  4. Ma, L., Liu, X., Pei, Q., Xiang, Y.: Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Serv. Comput. 12(5), 786–799 (2019)

    Article  Google Scholar 

  5. Ni, J., Zhang, K., Xia, Q., Lin, X., Shen, X.S.: Enabling strong privacy preservation and accurate task allocation for mobile crowdsensing. IEEE Trans. Mob. Comput. 19(6), 1317–1331 (2019)

    Article  Google Scholar 

  6. Dai, M., Su, Z., Xu, Q., Wang, Y., Lu, N.: A trust-driven contract incentive scheme for mobile crowd-sensing networks. IEEE Trans. Veh. Technol. 71, 1794–1806 (2021)

    Article  Google Scholar 

  7. Zhang, C., et al.: TPPR: a trust-based and privacy-preserving platoon recommendation scheme in VANET. IEEE Trans. Serv. Comput. (2019)

    Google Scholar 

  8. Wang, L., Zhang, D., Yang, D., Lim, B.Y., Han, X., Ma, X.: Sparse mobile crowdsensing with differential and distortion location privacy. IEEE Trans. Inf. Forensics Secur. 15, 2735–2749 (2020)

    Article  Google Scholar 

  9. Sun, G., Sun, S., Yu, H., Guizani, M.: Toward incentivizing fog- based privacy-preserving mobile crowdsensing in the Internet of Vehicles. IEEE Internet Things J. 7(5), 4128–4142 (2019)

    Article  Google Scholar 

  10. Lu, R., Lin, X., Zhu, H., Ho, P.-H., Shen, X.: ECPP: efficient conditional privacy preservation protocol for secure vehicular communications. In: Proceedings of the 27th Conference on IEEE INFOCOM, pp. 1903–1911 (2008)

    Google Scholar 

  11. Raya, M., Hubaux, J.-P.: Securing vehicular ad hoc networks. J. Comput. Secur. 15(1), 39–68 (2007)

    Article  Google Scholar 

  12. Zhao, B., Tang, S., Liu, X., Zhang, X.: PACE: privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing. IEEE Trans. Mob. Comput. 20(5), 1924–1939 (2020)

    Article  Google Scholar 

  13. Gao, S., Chen, X., Zhu, J., Dong, X., Ma, J.: TrustWorker: a trustworthy and privacy-preserving worker selection scheme for blockchain-based crowdsensing. IEEE Trans. Serv. Comput. (2021)

    Google Scholar 

  14. Hu, H., Lu, R., Zhang, Z., Shao, J.: REPLACE: a reliable trust- based platoon service recommendation scheme in VANET. IEEE Trans. Veh. Technol. 66(2), 1786–1797 (2016)

    Article  Google Scholar 

  15. Hu, H., Lu, R., Huang, C., Zhang, Z.: TripSense: a trust-based vehicular platoon crowdsensing scheme with privacy preservation in VANETs. Sensors 16(6), 803 (2016)

    Article  Google Scholar 

  16. Liu, Z., et al.: BTMPP: balancing trust management and privacy preservation for emergency message dissemination in vehicular networks. IEEE Internet Things J. 8(7), 5386–5407 (2021)

    Article  Google Scholar 

  17. Liu, Z., et al.: LPPTE: a lightweight privacy-preserving trust evaluation scheme for facilitating distributed data fusion in cooperative vehicular safety applications. Inf. Fusion 73, 144–156 (2021)

    Article  Google Scholar 

  18. Cheng, Y., Ma, J., Liu, Z., Wu, Y., Wei, K., Dong, C.: A lightweight privacy preservation scheme with efficient reputation management for mobile crowdsensing in vehicular networks. IEEE Trans. Dependable Secure Comput. (2022). https://doi.org/10.1109/TDSC.2022.3163752

  19. Nkenyereye, L., Islam, S.R., Bilal, M., Abdullah-Al-Wadud, M., Alamri, A., Nayyar, A.: Secure crowd-sensing protocol for fog-based vehicular cloud. Futur. Gener. Comput. Syst. 120, 61–75 (2021)

    Article  Google Scholar 

  20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  21. Liu, X., Deng, R.H., Choo, K.R., Weng, J.: An Efficient Privacy-Preserving Outsourced Calculation Toolkit With Multiple Keys. IEEE Trans. Inf. Forensics Secur. 11(11), 2401–2414 (2016). https://doi.org/10.1109/TIFS.2016.2573770

    Article  Google Scholar 

  22. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_3

    Chapter  Google Scholar 

  23. Engoulou, R.G., Bellaıche, M., Pierre, S., Quintero, A.: VANET security surveys. Comput. Commun. 44, 1–13 (2014)

    Article  Google Scholar 

  24. Guette, G., Heen, O.: A TPM-based architecture for improved security and anonymity in vehicular ad hoc networks. In: 2009 IEEE Vehicular Networking Conference (VNC), pp. 1–7. IEEE (2009)

    Google Scholar 

  25. He, D., Zeadally, S., Xu, B., Huan, X.: An efficient identity-based conditional privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Trans. Inf. Forensics Secur. 10(12), 2681–2691 (2015). https://doi.org/10.1109/TIFS.2015.2473820

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, Z., Liu, S., Huang, Y., Shen, H., Zhang, M. (2022). A Multi-task Mobile Crowdsensing Scheme with Conditional Privacy Preserving for Vehicle Networks. In: Chen, J., He, D., Lu, R. (eds) Emerging Information Security and Applications. EISA 2022. Communications in Computer and Information Science, vol 1641. Springer, Cham. https://doi.org/10.1007/978-3-031-23098-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23098-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23097-4

  • Online ISBN: 978-3-031-23098-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics