Abstract
The success of blockchains has led to ever-growing ledgers that are stored by all participating full nodes. In contrast, light clients only store small amounts of blockchain-related data and rely on the mediation of full nodes when interacting with the ledger. A broader adoption of blockchains calls for protocols that make this interaction trustless.
We revisit the design of light-client blockchain protocols from the perspective of classical proof-system theory, and explain the role that proofs of sequential work (PoSWs) can play in it. To this end, we define a new primitive called succinct non-interactive argument of chain knowledge (SNACK), a non-interactive proof system that provides clear security guarantees to a verifier (a light client) even when interacting only with a single dishonest prover (a full node). We show how augmenting any blockchain with any graph-labeling PoSW (GL-PoSW) enables SNACK proofs for this blockchain. We also provide a unified and extended definition of GL-PoSWs covering all existing constructions, and describe two new variants. We then show how SNACKs can be used to construct light-client protocols, and highlight some deficiencies of existing designs, along with mitigations. Finally, we introduce incremental SNACKs which could potentially provide a new approach to light mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The term light node or light client is sometimes used solely to refer to nodes adopting SPV (see below); we mean by it any node that does not store the full blockchain.
- 2.
We use the words chain and blockchain as synonyms throughout the paper.
- 3.
This is akin to f-extractability [BCKL08] of proof systems, which relaxes knowledge soundness by only requiring extraction of a partial witness (or a function thereof).
- 4.
The PoSW of [DLM19] is defined and constructed non-interactively by employing an on-the-fly sampling technique.
- 5.
Note that such a path exists since \(G_n\) has a unique sink.
- 6.
References
Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond Hellman’s time-memory trade-offs with applications to proofs of space. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Part II, volume 10625 of LNCS, pp. 357–379. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70697-9_13
Abusalah, H., Fuchsbauer, G., Gaži, P., Klein, K.: SNACKs: Leveraging proofs of sequential work for blockchain light clients. Cryptology ePrint Archive, Report 2022/240 (2022). https://eprint.iacr.org/2022/240
Abusalah, H., Kamath, C., Klein, K., Pietrzak, K., Walter, M.: Reversible proofs of sequential work. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part II, volume 11477 of LNCS, pp. 277–291. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17656-3_10
Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part I, volume 10991 of LNCS, pp. 757–788. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96884-1_25
Back, A., et al.: Enabling Blockchain Innovations with Pegged Sidechains (2014). https://blockstream.com/sidechains.pdf. Accessed 16 Aug 2019
Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20
Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Mannan, M., Backes, M., Wang, X., (eds.), ACM CCS 2018, pp. 913–930. ACM Press (2018)
Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: super-light clients for cryptocurrencies. In: 2020 IEEE Symposium on Security and Privacy, pp. 928–946. IEEE (2020)
Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency at scale. Cryptology ePrint Archive, Report 2020/352 (2020). https://eprint.iacr.org/2020/352
Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. Part I, volume 10401 of LNCS, pp. 324–356. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63688-7_11
Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_15
Cohen, B., Pietrzak, K.: The Chia Network blockchain (2019). https://www.chia.net/assets/ChiaGreenPaper.pdf
Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_29
David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3
Daveas, S., Karantias, K., Kiayias, A., Zindros, D.: A gas-efficient superlight bitcoin client in solidity. Cryptology ePrint Archive, Report 2020/927 (2020). https://eprint.iacr.org/2020/927
Döttling, N., Lai, R.W.F., Malavolta, G.: Incremental proofs of sequential work. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 292–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_11
Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-32101-7_2
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10
Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Symposium on Security and Privacy, pp. 139–156. IEEE (2019)
Gaži, P., Ren, L., Russell, A.: Practical settlement bounds for proof-of-work blockchains. Cryptology ePrint Archive, Report 2021/805 (2021). https://eprint.iacr.org/2021/805
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Karantias, K., Kiayias, A., Zindros, D.: Compact storage of superblocks for NIPoPoW applications. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp. 77–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4_6
Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_5
Kiayias, A., Leonardos, N., Zindros, D.: Mining in logarithmic space. In: Vigna, G., Shi, E., (eds.), ACM CCS 2021, pp. 3487–3501. ACM Press (2021)
Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-51280-4_27
Kiayias, A., Polydouri, A., Zindros, D.: The velvet path to superlight blockchain clients. Cryptology ePrint Archive, Report 2020/1122 (2020). https://eprint.iacr.org/2020/1122
Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. Part I, volume 10401 of LNCS, pp. 357–388. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63688-7_12
Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019 Workshops. LNCS, vol. 11599, pp. 21–34. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-43725-1_3
Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential work. In: Robert, D., Kleinberg, J., editor, ITCS 2013, pp. 373–388. ACM (2013)
Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://bitcoin.org/bitcoin.pdf. Accessed 19 June 2018
Pietrzak, K.: Simple verifiable delay functions. In Blum, A., editor, ITCS 2019, vol. 124, pp. 60:1–60:15. LIPIcs (2019)
Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Part II, volume 10625 of LNCS, pp. 380–409. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70697-9_14
Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22
Vesely, P., et al.: Plumo: An ultralight blockchain client. Cryptology ePrint Archive, Report 2021/1361 (2021). https://eprint.iacr.org/2021/1361
Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part III, volume 11478 of LNCS, pp. 379–407. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17659-4_13
Acknowledgements
The first two authors are supported by the Vienna Science and Technology Fund (WWTF) through project VRG18-002. The first author has also received funding in part from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No. 101001283), the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339), and a research grant from Nomadic Labs and the Tezos Foundation. The last author is supported in part by ERC CoG grant 724307 and conducted part of this work at ISTA, funded by the ERC under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Abusalah, H., Fuchsbauer, G., Gaži, P., Klein, K. (2022). SNACKs: Leveraging Proofs of Sequential Work for Blockchain Light Clients. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-22963-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22962-6
Online ISBN: 978-3-031-22963-3
eBook Packages: Computer ScienceComputer Science (R0)