Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mind the TWEAKEY Schedule: Cryptanalysis on SKINNYe-64-256

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13791))

Abstract

Designing symmetric ciphers for particular applications becomes a hot topic. At EUROCRYPT 2020, Naito, Sasaki and Sugawara invented the threshold implementation friendly cipher SKINNYe-64-256 to meet the requirement of the authenticated encryption PFB \(\_\)Plus. Soon, Thomas Peyrin pointed out that SKINNYe-64-256 may lose the security expectation due the new tweakey schedule. Although the security issue of SKINNYe-64-256 is still unclear, Naito et al. decided to introduce SKINNYe-64-256 v2 as a response.

In this paper, we give a formal cryptanalysis on the new tweakey schedule of SKINNYe-64-256 and discover unexpected differential cancellations in the tweakey schedule. For example, we find the number of cancellations can be up to 8 within 30 consecutive rounds, which is significantly larger than the expected 3 cancellations. Moreover, we take our new discoveries into rectangle, MITM and impossible differential attacks, and adapt the corresponding automatic tools with new constraints from our discoveries. Finally, we find a 41-round related-tweakey rectangle attack on SKINNYe-64-256 and leave a security margin of 3 rounds only.

As STK accepts arbitrary tweakey size, but SKINNY and SKINNYe-64-256 v2 only support up to 4n tweakey size. We introduce a new design of tweakey schedule for SKINNY-64 to further extend the supported tweakey size. We give a formal proof that our new tweakey schedule inherits the security requirement of STK and SKINNY. We also discuss possible ways to extend the tweakey size for SKINNY-128.

The full version of the paper is available at https://eprint.iacr.org/2022/789.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For TK-z, if the size of internal state is n, the size of tweakey will be zn.

  2. 2.

    The number of possible values of \(STK^{(36)}_3\) is computed via Table 6. For example, in line 6 of Table 6, \(\{ETK^{(0)}_{11},STK^{(38)}_7,STK^{(40)}_1\}\) \(\in k_b\cup k'_f\) derived from the 6-th nibble have already been guessed, so the number of possible values of \(STK^{(36)}_3\) is \(|Im(A_{\{0,3,4,5\}})|/|Im(A_{\{0,4,5\}})|=2^{15-12}=2^{3}\). Similarly, we compute all the number of possible values for subtweakey cells involved in the guess and filter procedure, which are listed in Table 7.

  3. 3.

    As shown in line 5 of Table 6, with \(STK^{(36)}_7\) deduced in step C and other cells guessed in \(k_b\cup k'_f\), the number of possible values is only 1 for \(STK^{(34)}_3\).

  4. 4.

    Similar issue happens to Lilliput-AE [1], one of the first-round candidates at the NIST competition, specifies TBCs with up to \(z=7\). However, they also ignored the rationale of the original tweakey framework to ensure the security, and were actually attacked practically [32].

  5. 5.

    The area of the trade-off implementation mainly includes the circuit for \(\boldsymbol{L}\) and \(\boldsymbol{L}^2\) and two 4-bit registers. In area optimization implementation, the area is the circuit of \(\boldsymbol{L}\) and one 4-bit register. Assume the registers bound the area, we can say trade-off method costs double area.

References

  1. Adomnicai, A.: Lilliput-AE: a new lightweight tweakable block cipher for authenticated encryption with associated data. Submission to NIST Lightweight Cryptography Project (2019)

    Google Scholar 

  2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

    Chapter  Google Scholar 

  3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  4. Ankele, R., et al.: Related-key impossible-differential attack on reduced-round Skinny. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 208–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_11

    Chapter  Google Scholar 

  5. Aoki, K., Sasaki, Yu.: Preimage attacks on one-block MD4, 63-step MD5 and more. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_7

    Chapter  Google Scholar 

  6. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  7. Bao, Z., Dong, X., Guo, J., Li, Z., Shi, D., Sun, S., Wang, X.: Automatic search of meet-in-the-middle preimage attacks on AES-like hashing. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 771–804. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_27

    Chapter  MATH  Google Scholar 

  8. Bao, Z., Guo, J., Shi, D., Tu, Y.: Superposition meet-in-the-middle attacks: updates on fundamental security of AES-like hashing. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, CRYPTO 2022, Lecture Notes in Computer Science, vol. 13507, pp. 64–93, Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_3

  9. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  10. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. Cryptology ePrint Archive, Report 2016/660 (2016)

    Google Scholar 

  11. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptology 2019(1), 5–45 (2019)

    Google Scholar 

  12. Bellizia, D., et al.: Spook: sponge-based leakage-resistant authenticated encryption with a masked tweakable block cipher. IACR Trans. Symmetric Cryptology 2020(S1), 295–349 (2020)

    Google Scholar 

  13. Beyne, T., Bilgin, B.: Uniform first-order threshold implementations. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 79–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_5

    Chapter  Google Scholar 

  14. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2

    Chapter  Google Scholar 

  15. Biham, E., Dunkelman, O., Keller, N.: New cryptanalytic results on IDEA. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_27

    Chapter  Google Scholar 

  16. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_1

    Chapter  Google Scholar 

  17. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21

    Chapter  Google Scholar 

  18. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_30

    Chapter  Google Scholar 

  19. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1

    Chapter  Google Scholar 

  20. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_16

    Chapter  MATH  Google Scholar 

  21. Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic sboxes. IACR Trans. Symmetric Cryptology 2018(3), 290–310 (2018)

    Article  Google Scholar 

  22. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 222–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_13

    Chapter  MATH  Google Scholar 

  23. Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22

    Chapter  Google Scholar 

  24. Delaune, S., Derbez, P., Vavrille, M.: Catching the fastest boomerangs application to SKINNY. IACR Trans. Symmetric Cryptology 2020(4), 104–129 (2020)

    Article  Google Scholar 

  25. Derbez, P., Fouque, P.-A.: Automatic search of meet-in-the-middle and impossible differential attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 157–184. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_6

    Chapter  MATH  Google Scholar 

  26. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round , in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_23

    Chapter  MATH  Google Scholar 

  27. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_42

    Chapter  Google Scholar 

  28. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptology 2017(1), 80–105 (2017)

    Article  Google Scholar 

  29. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks revisited: key-recovery, collision, and preimage attacks. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 278–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_10

    Chapter  Google Scholar 

  30. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule algorithms in rectangle attacks. In: EUROCRYPT 2022, Proceedings, Part III, vol. 13277 of LNCS, pp. 3–33 (2022)

    Google Scholar 

  31. Dunkelman, O., Huang, S., Lambooij, E., Perle, S.: Single tweakey cryptanalysis of reduced-round SKINNY-64. In: Dolev, S., Kolesnikov, V., Lodha, S., Weiss, G. (eds.) CSCML 2020. LNCS, vol. 12161, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49785-9_1

    Chapter  Google Scholar 

  32. Dunkelman, O., Keller, N., Lambooij, E., Sasaki, Yu.: A practical forgery attack on Lilliput-AE. J. Cryptol. 33(3), 910–916 (2020)

    Article  MATH  Google Scholar 

  33. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_10

    Chapter  Google Scholar 

  34. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptology 27(4), 824–849 (2014)

    Article  MATH  Google Scholar 

  35. Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 61–81. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_4

    Chapter  Google Scholar 

  36. Gao, S., Roy, A., Oswald, E.: Constructing TI-friendly substitution boxes using shift-invariant permutations. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 433–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_22

    Chapter  Google Scholar 

  37. Hadipour, H., Bagheri, N., Song, L.: Improved rectangle attacks on SKINNY and CRAFT. IACR Trans. Symmetric Cryptology 2, 140–198 (2021)

    Article  Google Scholar 

  38. Hua, J., Dong, X., Sun, S., Zhang, Z., Lei, H., Wang, X.: Improved MITM cryptanalysis on Streebog. IACR Trans. Symmetric Cryptology 2022(2), 63–91 (2022)

    Article  Google Scholar 

  39. Hua, J., Liu, T., Cui, Y., Qin, L., Dong, X., Cui, H.: Low-data cryptanalysis on SKINNY block cipher. Comput. J. (2022)

    Google Scholar 

  40. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  41. Isobe, T.: A single-key attack on the full GOST block cipher. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_17

    Chapter  Google Scholar 

  42. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

    Chapter  Google Scholar 

  43. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Submission to CAESAR : Deoxys v1.41, October 2016

    Google Scholar 

  44. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and Serpent. FSE 1978, 75–93 (2000)

    MATH  Google Scholar 

  45. Knudsen, L.R.: DEAL - a 128-bit block cipher. Complexity 258(2), 216 (1998)

    Google Scholar 

  46. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings. IACR Trans. Symmetric Cryptology 3, 37–72 (2017)

    Article  Google Scholar 

  47. Mennink, B.: Beyond birthday bound secure fresh rekeying: application to authenticated encryption. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 630–661. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_21

    Chapter  Google Scholar 

  48. Naito, Y., Sasaki, Yu., Sugawara, T.: Lightweight authenticated encryption mode suitable for threshold implementation. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 705–735. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_24

    Chapter  Google Scholar 

  49. Naito, Y., Sasaki, Y., Sugawara, T.: Secret can be public: low-memory AEAD mode for high-order masking. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, CRYPTO 2022. Lecture Notes in Computer Science, vol. 13509, pp. 315–345. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_11

  50. Naito, Y., Sasaki, Y., Sugawara, T.: Lightweight authenticated encryption mode suitable for threshold implementation. Cryptol. ePrint Arch. (2020)

    Google Scholar 

  51. Naito, Y., Sugawara, T.: Lightweight authenticated encryption mode of operation for tweakable block ciphers. IACR Trans. Cryptographic Hardware Embed. Syst. 2020(1), 66–94 (2020)

    Google Scholar 

  52. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38

    Chapter  MATH  Google Scholar 

  53. Qin, L., Dong, X., Wang, A., Hua, J., Wang, X.: Mind the tweakey schedule: cryptanalysis on skinnye-64-256. Cryptology ePrint Archive, Paper 2022/789, 2022. https://eprint.iacr.org/2022/789

  54. Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated search oriented to key recovery on ciphers with linear key schedule applications to boomerangs in SKINNY and ForkSkinny. IACR Trans. Symmetric Cryptology 2, 249–291 (2021)

    Article  Google Scholar 

  55. Rotman, J.J.: Advanced modern algebra. American Mathematical Soc., (2010)

    Google Scholar 

  56. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY block cipher. IACR Trans. Symmetric Cryptology 2018(3), 124–162 (2018)

    Article  Google Scholar 

  57. Sasaki, Yu.: Integer linear programming for three-subset meet-in-the-middle attacks: application to GIFT. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97916-8_15

    Chapter  Google Scholar 

  58. Sasaki, Yu.: Meet-in-the-middle preimage attacks on AES hashing modes and an application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_22

    Chapter  Google Scholar 

  59. Sasaki, Yu., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_8

    Chapter  MATH  Google Scholar 

  60. Schrottenloher, A., Stevens, M.: Simplified MITM modeling for permutations: new (quantum) attacks. In: CRYPTO (2022)

    Google Scholar 

  61. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. application to SKINNY and AES. IACR Trans. Symmetric Cryptology 2019(1), 118–141 (2019)

    Google Scholar 

  62. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57339-7_7

    Chapter  Google Scholar 

  63. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

  64. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. application to AES variants and Deoxys. IACR Trans. Symmetric Cryptology 2019(1), 142–169 (2019)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers from ASIACRYPT 2022 for their valuable comments. This work is supported by National Key R &D Program of China (2018YFA0704701), the Major Program of Guangdong Basic and Applied Research (2019B030302008), Natural Science Foundation of China (62272257, 61902207, 62072270, 62072207), Major Scientific and Technological Innovation Project of Shandong Province, China (2020ZLYS09 and 2019JZZY010133), Natural Science Foundation of Shanghai (19ZR1420000), and Open Foundation of Network and Data Security Key Laboratory of Sichuan Province (University of Electronic Science and Technology of China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyang Dong , Anyu Wang , Jialiang Hua or Xiaoyun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, L., Dong, X., Wang, A., Hua, J., Wang, X. (2022). Mind the TWEAKEY Schedule: Cryptanalysis on SKINNYe-64-256. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22963-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22962-6

  • Online ISBN: 978-3-031-22963-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics