Abstract
Cryptographic group actions are a relaxation of standard cryptographic groups that have less structure. This lack of structure allows them to be plausibly quantum resistant despite Shor’s algorithm, while still having a number of applications. The most famous example of group actions are built from isogenies on elliptic curves.
Our main result is that CDH for abelian group actions is quantumly equivalent to discrete log. Galbraith et al. (Mathematical Cryptology) previously showed perfectly solving CDH to be equivalent to discrete log quantumly; our result works for any non-negligible advantage. We also explore several other questions about group action and isogeny protocols.
Proving the equivalence of breaking the Diffie-Hellman protocol and computing discrete-log is one of the oldest problems in public key cryptography.
Boneh and Lipton [BL96]
A portion of this work was done when the author was employed by Fujitsu Research.
The full version of this paper is available at https://eprint.iacr.org/2022/1135.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A regular group action is a group action that, for every \(x_{1}, x_{2} \in X\), there exists a unique element \(g \in G\) such that \(x_{1} = g \star x_{2}\).
- 2.
- 3.
We note that our result does not directly apply to restricted effective group actions (REGAs) like CSIDH [CLM+18] and explain this in more detail later.
- 4.
We defer a formal definition of this problem to the body of the paper. It is shown in [BLP+13] that 1D-SIS, for certain parameter settings, is equivalent to the “standard” LWE problem.
- 5.
The adversary could be quantum but is restricted to classical queries to the group and group action oracles.
References
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, May 1996
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms for the inhomogeneous short integer solution problem. J. Cryptol. 32(1), 35–83 (2019)
Boneh, D., Kim, S., Montgomery, H.: Private Puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15
Ben-Zvi, A., Kalka, A., Tsaban, B.: Cryptanalysis via algebraic spans. Cryptology ePrint Archive, Report 2014/041 (2014). https://eprint.iacr.org/2014/041
Ben-Zvi, A., Kalka, A., Tsaban, B.: Cryptanalysis via algebraic spans. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 255–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_9
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_34
Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_22
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, June 2013
Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_27
Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17
Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic prfs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
Brassard, G., Yung, M.: One-Way Group Actions. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_7
Castryck, W., Decru, T.: An efficient key recovery attack on sidh (preliminary version). Cryptology ePrint Archive, Paper 2022/975 (2022). https://eprint.iacr.org/2022/975
Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptology 8(1), 1–29 (2014)
Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Math. Cryptology 14(1), 414–437 (2020)
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Cheung, K.K.H., Mosca, M.: Decomposing finite abelian groups. Quantum Inform. Comput. 1(3), 26–32 (2001)
Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291
Childs, A.M., Van Dam, W.: Quantum algorithm for a generalized hidden shift problem. arXiv preprint quant-ph/0507190 (2005)
Dartois, P., De Feo, L.: On the security of osidh. Cryptology ePrint Archive (2021)
Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_38
De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part III, volume 11478 of LNCS, pp. 759–789. Springer, Heidelberg (2019)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)
De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_7
Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the DLP and CDHP for group actions. Cryptology ePrint Archive, Report 2018/1199 (2018). https://eprint.iacr.org/2018/1199
Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May 1989
Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: a candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_11
Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_10
Kobayashi, H., Le Gall, F.: Dihedral hidden subgroup problem: a survey. Inf. Media Technol. 1(1), 178–185 (2006)
Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)
Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In: Severini, S., Brandao, F., (eds.) 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 22, pp. 20–34, Dagstuhl, Germany, 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_8
Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18(3), 1269–1283 (1990)
Maurer, U.M.: Towards the equivalence of breaking the diffie-hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_26
Maino, L., Martindale, C.: An attack on sidh with arbitrary starting curve. Cryptology ePrint Archive, Paper 2022/1026 (2022). https://eprint.iacr.org/2022/1026
Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_21
Onuki, H.: On oriented supersingular elliptic curves. Finite Fields Appl. 69, 101777 (2021)
Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_16
Regev, O.: Quantum computation and lattice problems. In: 43rd FOCS, pp. 520–529. IEEE Computer Society Press, November 2002
Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. arXiv:quant-ph/0406151, June 2004
Robert, D.: Breaking sidh in polynomial time. Cryptology ePrint Archive, Paper 2022/1038 (2022). https://eprint.iacr.org/2022/1038
Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)
Shor., P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November 1994
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18
Shpilrain, V.: Cryptanalysis of stickel’s key exchange scheme. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 283–288. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79709-8_29
Stickel, E.: A new method for exchanging secret keys. In: Third International Conference on Information Technology and Applications (ICITA’05), vol. 2, pp. 426–430. IEEE (2005)
Shpilrain, V., Ushakov, A.: A new key exchange protocol based on the decomposition problem. Cryptology ePrint Archive, Report 2005/447 (2005). https://ia.cr/2005/447
Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 151–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_11
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Montgomery, H., Zhandry, M. (2022). Full Quantum Equivalence of Group Action DLog and CDH, and More. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-22963-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22962-6
Online ISBN: 978-3-031-22963-3
eBook Packages: Computer ScienceComputer Science (R0)