Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the 2-Adic Complexity of Cyclotomic Binary Sequences with Period \(p^2\) and \(2p^2\)

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13638))

Included in the following conference series:

  • 545 Accesses

Abstract

Let p be a prime. In this paper, we obtain the 2-adic complexity of all almost balanced cyclotomic binary sequence of order two with period \(p^2\); and also show the 2-adic complexity of several non-trivial balanced cyclotomic binary sequences of order two with period \(2p^2\).

2010 Mathematics Subject Classification. 94B05

The paper was supported by National Natural Science Foundation of China (No. 62172219).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  2. Cai, H., Zhou, Z., Yang, Y., Tang, X.: A new construction of frequency-hopping sequences with optimal partial hamming correlation. IEEE Trans. Inf. Theory 60(9), 5782–5790 (2014)

    Google Scholar 

  3. Ding, C., Helleseth, T., Lam, K.Y.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inf. Theory 45(7), 2606–2612 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, C., Helleseth, T., Martinsen, H.: New families of binary sequences with optimal three-level autocorrelation. IEEE Trans. Inf. Theory 47(1), 428–433 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, C., Yang, Y., Tang, X.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory 56(7), 3605–3612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. North-Holland/Elsevier, Amsterdam, The Netherlands (1998)

    Google Scholar 

  7. Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967)

    MATH  Google Scholar 

  8. Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, Huffman (eds.) Handbook of Coding Theory, vol. II, pp. 1765–1854. Elsevier, Amsterdam, The Netherlands (1998)

    Google Scholar 

  9. Hofer, R., Winterhof, A.: On the 2-adic complexity of the two-prime generator. IEEE Trans. Inf. Theory 64(8), 5957–5960 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, H.: Comments on a new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inf. Theory 60(9), 5803–5804 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, L., Yue, Q.: Gauss periods and codebooks from generalized cyclotomic sets of order four. Des. Codes Cryptogr. 69, 233–246 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approximation. Adv. Cryptol. 963, 262–273 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10(2), 111–147 (1997). https://doi.org/10.1007/s001459900024

    Article  MathSciNet  MATH  Google Scholar 

  14. Lempel, A., Cohn, M., Eastman, W.L.: A class of binary sequences with optimal autocorrelation properties. IEEE Trans. Inform. Theory 23(1), 38–42 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, X., Yan, T., Huang, X., Yue, Q.: An extension method to construct M-ary sequences of period \(4\)N with low autocorrelation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 104-A(1), 332–335 (2021)

    Google Scholar 

  16. Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications, vol. 1. Computer Science Press, Rockville, MD (1985)

    Google Scholar 

  17. Storer, T.: Cyclotomy and Difference Sets. Markham Pub. Co. (1967)

    Google Scholar 

  18. Sun, Y., Wang, Q., Yan, T.: The exact autocorrelation distribution and 2-adic complexity of a class of binary sequences with almost optimal autocorrelation. Cryptogr. Commun. 10(3), 467–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, Y., Wang, Q., Yan, T.: A lower bound on the 2-adic complexity of the modified Jacobi sequence. Cryptogr. Commun. 11(2), 337–349 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, Y., Yan, T., Chen, Z.: The 2-adic complexity of a class of binary sequences with optimal autocorrelation magnitude. Cryptogr. Commun. 12(4), 675–683 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, X., Ding, C.: New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value. IEEE Trans. Inf. Theory 56(12), 6398–6405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, X., Gong, G.: New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. Inf. Theory 56(3), 1278–1286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, T., Qi, W.F.: 2-adic complexity of binary m-sequences. IEEE Trans. Inf. Theory 56(1), 450–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Whiteman, A.L.: The cyclotomic numbers of order twelve. Acta Arith. 6, 53–76 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao, Z., Zeng, X., Sun, Z.: 2-adic complexity of two classes of generalized cyclotomic binary sequences. Int. J. Found. Comput. Sci 27(7), 879–893 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiong, H., Qu, L., Li, C.: A new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inf. Theory 60(4), 2399–2406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, Y., Huo, F., Gong, G.: Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, pp. 1024–1028. In: ISIT (2012)

    Google Scholar 

  28. Yang, Y., Tang, X., Zhou, Z.: The autocorrelation magnitude of balanced binary sequence pairs of prime period \(N\equiv 1 ~(mod \;\; 4)\) with optimal cross-correlation. IEEE Commun. Lett. 19(4), 585–588 (2015)

    Google Scholar 

  29. Yang, Y., Tang, X., Peng, D., Parampalli, U.: New bound on frequency hopping sequence sets and its optimal constructions. IEEE Trans. Inf. Theory 57(11), 7605–7613 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, X., Cai, H., Tang, X., Yang, Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59(5), 3237–3248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, L., Zhang, J., Yang, M., Feng, K.: On the 2-adic complexity of the Ding-Helleseth-Martinsen binary sequences. IEEE Trans. Inf. Theory 66(7), 4613–4620 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, Z., Helleseth, T., Parampalli, U.: A family of polyphase sequences with asymptotically optimal correlation. IEEE Trans. Inf. Theory 64(4), 2896–2900 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, Z., Tang, X., Gong, G.: A new class of sequences with zero or low correlation zone based on interleaving technique. IEEE Trans. Inf. Theory 54(9), 4267–4273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, Z., Tang, X., Niu, X., Parampalli, U.: New classes of frequency-hopping sequences with optimal partial correlation. IEEE Trans. Inf. Theory 58(1), 453–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Z., Tang, X., Peng, D., Parampalli, U.: New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory 57(6), 3831–3840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, Z., Zhang, D., Helleseth, T., Wen, J.: A construction of multiple optimal ZCZ sequence sets with good cross correlation. IEEE Trans. Inf. Theory 64(2), 1340–1346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, F., Yue, Q., Li, X. (2023). On the 2-Adic Complexity of Cyclotomic Binary Sequences with Period \(p^2\) and \(2p^2\). In: Mesnager, S., Zhou, Z. (eds) Arithmetic of Finite Fields. WAIFI 2022. Lecture Notes in Computer Science, vol 13638. Springer, Cham. https://doi.org/10.1007/978-3-031-22944-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22944-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22943-5

  • Online ISBN: 978-3-031-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics