Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-view Based Clustering of 3D LiDAR Point Clouds for Intelligent Vehicles

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

3D point clustering is important for the LiDAR perception system involved applications in tracking, 3D detection, etc. With the development of high-resolution LiDAR, each LiDAR frame perceives richer detail information of the surrounding environment but highly enlarges the point data volume, which brings a challenge for clustering algorithms to precisely segment the point cloud while running with a real-time processing speed. To meet this challenge, we innovate a multi-view (bird’s eye view and front view) based clustering method, named MVC. The method contains two stages. In the first stage, we propose a density image based algorithm, PG-DBSCAN, to segment the point cloud in bird’s eye view (BEV), which derives the preliminary division with fairly low computation resources. Then in the second stage, a front view (FV) clustering process is integrated to refine the under-segmented clusters. Our method takes both the speed and precision advantages of BEV and FV clustering, and this coarse-to-fine architecture reasonably allocates the computation resources and shows a real-time outstanding clustering performance. We evaluate the MVC algorithm both on the publicly available dataset with 64-line LiDAR and our own dataset with 128-line LiDAR. Compared with other clustering methods, MVC is able to derive more accurate clustering results. Specifically, toward the 128-line LiDAR with large data volume, our method shows an outperforming running speed, which perfectly fits on the LiDAR perception tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.robosense.ai/en/rslidar/RS-Ruby.

  2. 2.

    https://www.reachauto.com/.

References

  1. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  2. Bogoslavskyi, I., Stachniss, C.: Fast range image-based segmentation of sparse 3D laser scans for online operation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 163–169. IEEE (2016)

    Google Scholar 

  3. Burger, P., Wuensche, H.J.: Fast multi-pass 3D point segmentation based on a structured mesh graph for ground vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 2150–2156. IEEE (2018)

    Google Scholar 

  4. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  5. Douillard, B., et al.: Hybrid elevation maps: 3D surface models for segmentation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1532–1538. IEEE (2010)

    Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  7. Gasperini, S., Mahani, M.A.N., Marcos-Ramiro, A., Navab, N., Tombari, F.: Panoster: end-to-end panoptic segmentation of lidar point clouds. IEEE Robot. Autom. Lett. 6(2), 3216–3223 (2021)

    Article  Google Scholar 

  8. Hasecke, F., Hahn, L., Kummert, A.: Fast lidar clustering by density and connectivity. arXiv e-prints pp. arXiv-2003 (2020)

    Google Scholar 

  9. Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.J.: Fast segmentation of 3D point clouds for ground vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 560–565. IEEE (2010)

    Google Scholar 

  10. Hong, F., Zhou, H., Zhu, X., Li, H., Liu, Z.: Lidar-based panoptic segmentation via dynamic shifting network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13090–13099 (2021)

    Google Scholar 

  11. Klasing, K., Wollherr, D., Buss, M.: A clustering method for efficient segmentation of 3D laser data. In: 2008 IEEE International Conference on Robotics and Automation, pp. 4043–4048. IEEE (2008)

    Google Scholar 

  12. Li, M., Yin, D.: A fast segmentation method of sparse point clouds. In: 2017 29th Chinese Control And Decision Conference (CCDC), pp. 3561–3565. IEEE (2017)

    Google Scholar 

  13. Li, Y., Le Bihan, C., Pourtau, T., Ristorcelli, T.: Insclustering: instantly clustering lidar range measures for autonomous vehicle. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2020)

    Google Scholar 

  14. Moosmann, F., Pink, O., Stiller, C.: Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 215–220. IEEE (2009)

    Google Scholar 

  15. Park, S., Wang, S., Lim, H., Kang, U.: Curved-voxel clustering for accurate segmentation of 3D lidar point clouds with real-time performance. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6459–6464. IEEE (2019)

    Google Scholar 

  16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  17. Shin, M.O., Oh, G.M., Kim, S.W., Seo, S.W.: Real-time and accurate segmentation of 3-D point clouds based on gaussian process regression. IEEE Trans. Intell. Transp. Syst. 18(12), 3363–3377 (2017)

    Article  Google Scholar 

  18. Sirohi, K., Mohan, R., Büscher, D., Burgard, W., Valada, A.: Efficientlps: efficient lidar panoptic segmentation. IEEE Trans. Robot. (2021)

    Google Scholar 

  19. Thrun, S., Montemerlo, M., Aron, A.: Probabilistic terrain analysis for high-speed desert driving. In: Robotics: Science and Systems, pp. 16–19 (2006)

    Google Scholar 

  20. Urmson, C., et al.: High speed navigation of unrehearsed terrain: Red team technology for grand challenge 2004. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-04-37 1 (2004)

    Google Scholar 

  21. Wen, M., Cho, S., Chae, J., Sung, Y., Cho, K.: Range image-based density-based spatial clustering of application with noise clustering method of three-dimensional point clouds. Int. J. Adv. Robot. Syst. 15(2), 1729881418762302 (2018)

    Google Scholar 

  22. Zermas, D., Izzat, I., Papanikolopoulos, N.: Fast segmentation of 3D point clouds: a paradigm on lidar data for autonomous vehicle applications. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5067–5073. IEEE (2017)

    Google Scholar 

  23. Zhao, Y., Zhang, X., Huang, X.: A technical survey and evaluation of traditional point cloud clustering methods for lidar panoptic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2464–2473 (2021)

    Google Scholar 

  24. Zhou, H., et al.: Cylinder3d: An effective 3D framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuotao Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jie, H., Ning, Z., Zhao, Q., Liu, W., Hu, J., Gao, J. (2022). Multi-view Based Clustering of 3D LiDAR Point Clouds for Intelligent Vehicles. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics