Abstract
Emotion recognition affords new approaches ranging from context-awareness to the efficiency of system interaction with the ability to perceive and express emotions. While most studies are dominated by discrete and dimensional theoretical models of emotion, neuroscience analysis aligns with the multi-component interpretation of emotional phenomena. One such componential theory is the Component Process Model (CPM), with five synchronized components: appraisal, motivation, physiology, expression and feeling. However, limited attention has been paid to the systematic investigation of emotions assuming a full CPM. Therefore, we induced various emotions in this preliminary analysis using 27 interactive Virtual Reality (VR) games. We measured the manifestation of 28 participants across CPM components, 20 discrete emotion terms, heart activity, skin conductance, and facial electromyography. Our work aims to analyze the relationship between discrete theory-based emotions and the theoretically defined components with physiological measures. Further, we analyze the correlation between subjective expression terms with objective facial expressions. Our Machine Learning (ML) analysis reveals a significant relationship between emotions and full componential features with physiological signals. Further, our study presents the role of each CPM component in emotion differentiation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bassano, C., et al.: A VR game-based system for multimodal emotion data collection. In: MIG 2019. Association for Computing Machinery, New York (2019)
Boot, L.: Facial expressions in EEG/EMG recordings. Thesis (2009)
Cacioppo, J.T., Petty, R.E., Losch, M.E., Kim, H.S.: Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. J. Pers. Soc. Psychol. 50(2), 260 (1986)
Chandra, V., Priyarup, A., Sethia, D.: Comparative study of physiological signals from Empatica E4 wristband for stress classification. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds.) ICACDS 2021. CCIS, vol. 1441, pp. 218–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88244-0_21
Domínguez-Jiménez, J.A., Campo-Landines, K.C., Martínez-Santos, J.C., Delahoz, E.J., Contreras-Ortiz, S.H.: A machine learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control 55, 101646 (2020)
Dupré, D., Tcherkassof, A., Dubois, M.: Emotions triggered by innovative products: a multi-componential approach of emotions for user experience tools. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 772–777 (2015)
Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)
Elvitigala, D.S., Matthies, D.J.C., Nanayakkara, S.: Stressfoot: uncovering the potential of the foot for acute stress sensing in sitting posture. Sensors 20(10), 2882 (2020)
Frank, M.G., Ekman, P., Friesen, W.V.: Behavioral markers and recognizability of the smile of enjoyment. J. Pers. Soc. Psychol. 64(1), 83 (1993)
Gentsch, K., Beermann, U., Wu, L., Trznadel, S., Scherer, K.: Temporal unfolding of micro-valences in facial expression evoked by visual, auditory, and olfactory stimuli. Affect. Sci. 1(4), 208–224 (2020)
Gnacek, M., et al.: EmteqPRO-fully integrated biometric sensing array for non-invasive biomedical research in virtual reality. Front. Virtual Reality 3 (2022)
Granato, M., Gadia, D., Maggiorini, D., Ripamonti, L.A.: An empirical study of players’ emotions in VR racing games based on a dataset of physiological data. Multimedia Tools Appl. 79(45), 33657–33686 (2020)
Grandjean, D., Sander, D., Scherer, K.: Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Conscious. Cogn. 17, 484–95 (2008)
Gruebler, A., Berenz, V., Suzuki, K.: Emotionally assisted human-robot interaction using a wearable device for reading facial expressions. Adv. Robot. 26(10), 1143–1159 (2012)
Inzelberg, L., Rand, D., Steinberg, S., David-Pur, M., Hanein, Y.: A wearable high-resolution facial electromyography for long term recordings in freely behaving humans. Sci. Rep. 8(1), 1–9 (2018)
Izard, C.E.: Basic emotions, natural kinds, emotion schemas, and a new paradigm. Perspect. Psychol. Sci. 2(3), 260–280 (2007)
Izard, C.E.: Emotion theory and research: highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 60, 1–25 (2009)
Kehri, V., Awale, R.: A facial EMG data analysis for emotion classification based on spectral kurtogram and CNN. Int. J. Digital Signals Smart Syst. 4(1–3), 50–63 (2020)
Kory, J.M., D’Mello, S.K.: Affect elicitation for affective computing. In: The Oxford Handbook of Affective Computing, p. 371 (2014)
Kreibig, S.D.: Autonomic nervous system activity in emotion: a review. Biol. Psychol. 84(3), 394–421 (2010)
Mavridou, I., et al.: FACETEQ interface demo for emotion expression in VR. In: 2017 IEEE Virtual Reality (VR), pp. 441–442 (2017)
Mavridou, I., Seiss, E., Hamedi, M., Balaguer-Ballester, E., Nduka, C.: Towards valence detection from EMG for virtual reality applications. In: 12th International Conference on Disability, Virtual Reality and Associated Technologies (ICDVRAT 2018). ICDVRAT, University of Reading, Reading, UK (2018)
Menétrey, M.: Assessing the Component Process Model of Emotion using multivariate pattern classification analyses. Thesis (2019)
Menétrey, M.Q., Mohammadi, G., Leitão, J., Vuilleumier, P.: Emotion recognition in a multi-componential framework: the role of physiology (2021). https://doi.org/10.1101/2021.04.08.438559
Meuleman, B., Rudrauf, D.: Induction and profiling of strong multi-componential emotions in virtual reality. IEEE Trans. Affect. Comput. 12(1), 189–202 (2018)
Mohammadi, G., Vuilleumier, P.: A multi-componential approach to emotion recognition and the effect of personality. IEEE Trans. Affect. Comput. 13(3), 1127–1139 (2020)
Ojha, S., Vitale, J., Williams, M.A.: Computational emotion models: a thematic review. Int. J. Soc. Robot. 13(6), 1253–1279 (2020)
Perusquía-Hernández, M., Hirokawa, M., Suzuki, K.: Spontaneous and posed smile recognition based on spatial and temporal patterns of facial EMG. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 537–541. IEEE (2017)
Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)
van Reekum, C., Johnstone, T., Banse, R., Etter, A., Wehrle, T., Scherer, K.: Psychophysiological responses to appraisal dimensions in a computer game. Cogn. Emot. 18(5), 663–688 (2004)
Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)
Scherer, K., Dieckmann, A., Unfried, M., Ellgring, H., Mortillaro, M.: Investigating appraisal-driven facial expression and inference in emotion communication. Emotion 21(1), 73 (2019)
Scherer, K.R.: The dynamic architecture of emotion: evidence for the component process model. Cogn. Emot. 23(7), 1307–1351 (2009)
Scherer, K.R.: Emotions are emergent processes: they require a dynamic computational architecture. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364(1535), 3459–3474 (2009)
Scherer, K.R., Fontaine, J.R.F., Soriano, C.: CoreGRID and MiniGRID: Development and Validation of Two Short Versions of the GRID Instrument. Oxford University Press, Oxford (2013)
Schilbach, L., Eickhoff, S.B., Mojzisch, A., Vogeley, K.: What’s in a smile? Neural correlates of facial embodiment during social interaction. Soc. Neurosci. 3(1), 37–50 (2008)
Shumailov, I., Gunes, H.: Computational analysis of valence and arousal in virtual reality gaming using lower arm electromyograms. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 164–169 (2017)
Shuman, V., Schlegel, K., Scherer, K.: Geneva Emotion Wheel Rating Study (2015)
Somarathna, R., Bednarz, T., Mohammadi, G.: An exploratory analysis of interactive VR-based framework for multi-componential analysis of emotion. In: 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 353–358 (2022)
Somarathna, R., Bednarz, T., Mohammadi, G.: Virtual reality for emotion elicitation - a review. IEEE Trans. Affect. Comput. 1–21 (2022)
Somarathna, R., Bednarz, T., Mohammadi, G.: Multi-componential analysis of emotions using virtual reality. In: Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, Article 85. Association for Computing Machinery (2021)
Somarathna, R., Vuilleumier, P., Bednarz, T., Mohammadi, G.: A machine learning model for analyzing the multivariate patterns of emotions in multi-componential framework with personalization. Available at SSRN 4075454
Subramanian, R., Wache, J., Abadi, M.K., Vieriu, R.L., Winkler, S., Sebe, N.: Ascertain: emotion and personality recognition using commercial sensors. IEEE Trans. Affect. Comput. 9(2), 147–160 (2018)
Val-Calvo, M., Álvarez-Sánchez, J.R., Ferrández-Vicente, J.M., Fernández, E.: Affective robot story-telling human-robot interaction: exploratory real-time emotion estimation analysis using facial expressions and physiological signals. IEEE Access 8, 134051–134066 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Somarathna, R., Quigley, A., Mohammadi, G. (2022). Multi-componential Emotion Recognition in VR Using Physiological Signals. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-22695-3_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22694-6
Online ISBN: 978-3-031-22695-3
eBook Packages: Computer ScienceComputer Science (R0)