Nothing Special   »   [go: up one dir, main page]

Skip to main content

Secure Sampling with Sublinear Communication

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Abstract

Random sampling from specified distributions is an important tool with wide applications for analysis of large-scale data. In this paper we study how to randomly sample when the distribution is partitioned among two parties’ private inputs. Of course, a trivial solution is to have one party send a (possibly encrypted) description of its weights to the other party who can then sample over the entire distribution (possibly using homomorphic encryption). However, this approach requires communication that is linear in the input size which is prohibitively expensive in many settings. In this paper, we investigate secure 2-party sampling with sublinear communication for many standard distributions. We develop protocols for \(L_1\), and \(L_2\) sampling. Additionally, we investigate the feasibility of sublinear product sampling, showing impossibility for the general problem and showing a protocol for a restricted case of the problem. We additionally show how such product sampling can be used to instantiate a sublinear communication 2-party exponential mechanism for differentially-private data release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Of course, if \(\langle \textbf{w}_1, \textbf{w}_2 \rangle = 0\), the probability space is not well-defined, and in this case, we require the protocol to simply output \(\bot \).

  2. 2.

    Throughout the paper, we will describe the round and communication complexities using the asymptotic notation only based on n. That is, all other parameters (e.g., security parameter) independent on n will be suppressed in the asymptotic expressions.

  3. 3.

    Here the assumption that \(\textbf{w}\) are normalized is without loss of generality.

  4. 4.

    Regarding \(\langle \textbf{w}_1, \textbf{w}_2 \rangle \), there is a gap between the lowerbound result (i.e., \(\varOmega (\frac{1}{n^2})\)) and our construction (i.e., \(\omega (\frac{\log n}{n})\)). Resolving the gap is left as an interesting open problem.

  5. 5.

    This can be shown by a simple modification of the lower bound proof from Sect. 4.1.

References

  1. Acar, A., Celik, Z.B., Aksu, H., Uluagac, A.S., McDaniel, P.: Achieving secure and differentially private computations in multiparty settings. In 2017 IEEE Symposium on Privacy-Aware Computing (PAC), pp. 49–59. IEEE (2017)

    Google Scholar 

  2. Andoni, A., Krauthgamer, R., Onak, K.: Streaming algorithms via precision sampling. In: Ostrovsky, R., IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 363–372. IEEE Computer Society (2011)

    Google Scholar 

  3. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols and logspace-hard pseudorandom sequences (extended abstract). In: 21st ACM STOC, pp. 1–11. ACM Press (1989)

    Google Scholar 

  4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows. J. Comput. Syst. Sci. 78(1), 260–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Champion, J., Shelat, A., Ullman, J.: Securely sampling biased coins with applications to differential privacy. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J., (eds.) ACM CCS 2019, pp. 603–614. ACM Press, (2019)

    Google Scholar 

  7. Choi, S.G., Dachman-Soled, D., Gordon, S.D., Liu, L., Yerukhimovich, A.: Secure sampling with sublinear communication. Cryptology ePrint Archive, Paper 2022/660 (2022). https://eprint.iacr.org/2022/660

  8. Choi, S.G., Dachman-Soled, D., Kulkarni, M., Yerukhimovich, A.: Differentially-private multi-party sketching for large-scale statistics. PoPETs 2020(3), 153–174 (2020)

    Article  Google Scholar 

  9. Clifton, C., Anandan, B.: Challenges and opportunities for security with differential privacy. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45204-8_1

    Chapter  Google Scholar 

  10. Cormode, G., Jowhari, H.: L p samplers and their applications: a survey. ACM Comput. Surv. (CSUR) 52(1), 1–31 (2019)

    Article  Google Scholar 

  11. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29

    Chapter  Google Scholar 

  12. Elahi, T., Danezis, G., Goldberg, I.: PrivEx: private collection of traffic statistics for anonymous communication networks. In: Ahn, G.J., Yung, M., Li, N., (eds.) ACM CCS 2014, pp. 1068–1079. ACM Press (2014)

    Google Scholar 

  13. Eriguchi, R., Ichikawa, A., Kunihiro, N., Nuida, K.: Efficient noise generation to achieve differential privacy with applications to secure multiparty computation. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 271–290. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8_13

    Chapter  Google Scholar 

  14. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M., Wright, R.N.: Secure multiparty computation of approximations. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 927–938. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_75

    Chapter  Google Scholar 

  15. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation of approximations. ACM Trans. Algorithms 2(3), 435–472 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ganguly, S.: Counting distinct items over update streams. Theoret. Comput. Sci. 378(3), 211–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goryczka, S., Xiong, L., Sunderam, V.: Secure multiparty aggregation with differential privacy: a comparative study. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 155–163 (2013)

    Google Scholar 

  18. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: 30th ACM STOC, pp. 604–613. ACM Press (1998)

    Google Scholar 

  19. Jansen, R., Johnson, A.: Safely measuring tor. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., (eds.) ACM CCS 2016, pp. 1553–1567. ACM Press (2016)

    Google Scholar 

  20. Johnson, W.B. Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space (1984)

    Google Scholar 

  21. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for LP samplers, finding duplicates in streams, and related problems. In: Lenzerini, M., Schwentick, T., (eds.) Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, 12–16 June 2011, Athens, Greece, pp. 49–58. ACM (2011)

    Google Scholar 

  22. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for LP samplers, finding duplicates in streams, and related problems. In: Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 49–58 (2011)

    Google Scholar 

  23. Kabán, A.: Improved bounds on the dot product under random projection and random sign projection. In: Cao, L., Zhang, C., Joachims, T., Webb, G.I.B., Margineantu, D., Williams, G., (eds.) Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015, pp. 487–496. ACM (2015)

    Google Scholar 

  24. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th FOCS, pp. 94–103. IEEE Computer Society Press (2007)

    Google Scholar 

  26. Melis, L., Danezis, G., De Cristofaro, E.: Efficient private statistics with succinct sketches. In: NDSS 2016. The Internet Society (2016)

    Google Scholar 

  27. Monemizadeh, M., Woodruff, D.P.: 1-pass relative-error l\({}_{\text{p}}\)-sampling with applications. In: Charikar, M., ed. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, 17–19 January 2010, pp. 1143–1160. SIAM (2010)

    Google Scholar 

  28. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption from ring-learning-with-errors. PoPETs 2021(4), 291–311 (2021)

    Article  MATH  Google Scholar 

  29. Pathak, M., Rane, S., Raj, B.: Multiparty differential privacy via aggregation of locally trained classifiers. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  30. Pentyala, S., et al.: Training differentially private models with secure multiparty computation. arXiv preprint arXiv:2202.02625 (2022)

  31. Prabhakaran, M.M., Prabhakaran, V.M.: On secure multiparty sampling for more than two parties. In 2012 IEEE Information Theory Workshop, pp. 99–103. IEEE (2012)

    Google Scholar 

  32. Prabhakaran, V.M., Prabhakaran, M.M.: Assisted common information with an application to secure two-party sampling. IEEE Trans. Inf. Theor. 60(6), 3413–3434 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comput. Sci. 106(2), 385–390 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy: statistics in tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J., (eds.) ACM CCS 2019, pp. 615–632. ACM Press (2019)

    Google Scholar 

  35. Woodruff, D.P., Zhong, P.: Distributed low rank approximation of implicit functions of a matrix. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 847–858. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

Seung Geol Choi is supported by NSF grant #CNS-1955319. Dana Dachman-Soled is supported in part by NSF grants #IIS-2147276, #CNS-1933033, #CNS-1453045 (CAREER), and by financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S. Department of Commerce, National Institute of Standards and Technology. Dov Gordon is supported by NSF grant #CNS-1955264. Arkady Yerukhimovich is supported by NSF grant #CNS-1955620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Geol Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, S.G., Dachman-Soled, D., Gordon, S.D., Liu, L., Yerukhimovich, A. (2022). Secure Sampling with Sublinear Communication. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13748. Springer, Cham. https://doi.org/10.1007/978-3-031-22365-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22365-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22364-8

  • Online ISBN: 978-3-031-22365-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics