Abstract
Given a discrete-state continuous-time reactive system, like a digital circuit, the classical approach is to first model it as a state transition system and then prove its properties. Our contribution advocates a different approach: to directly operate on the input-output behavior of such systems, without identifying states and their transitions in the first place. We discuss the benefits of this approach at hand of some examples, which demonstrate that it nicely integrates with concepts of self-stabilization and fault-tolerance. We also elaborate on some unexpected artefacts of module composition in our framework, and conclude with some open research questions.
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 716562). The work was also supported by the Austrian Science Fund project DMAC (P32431) and by the ANR project DREAMY (ANR-21-CE48-0003).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Metastable upsets can occur in any state-holding device with discrete stable states, such as memory cells. If a new state transition is triggered before the state change caused by the previous one has settled, an intermediate output value may be observed arbitrarily late. Even Byzantine (i.e., “worst-case”) fault-tolerance techniques are incapable of containing the effects of metastable upsets perfectly [22], since a signal outside the (discrete) value domain is not just an arbitrary regular signal. Metastability is not restricted to electrical systems. For example, an engineered genetic toggle switch [28], acting as a memory cell storing 0 or 1, was observed to exhibit metastable behavior besides its two stable states.
- 2.
- 3.
Whereas one could extend our framework to restrict the adversary here, e.g., to capture probabilistic choice, we will not consider this possibility in this work.
- 4.
Since we can consider the inertial delay channel to be a basic module here, we need not care about implementability at that point.
References
Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)
de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-Vincentelli, A., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45828-X_9
Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000). https://doi.org/10.1109/5.871304
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8. http://www.sciencedirect.com/science/article/pii/0304397594900108
Awerbuch, B.: Complexity of network synchronization. JACM 32(4), 804–823 (1985)
Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40708-6_13
Baumann, R.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device Mater. Reliab. 5(3), 305–316 (2005)
Bellido-Diaz, M.J., Juan-Chico, J., Acosta, A., Valencia, M., Huertas, J.L.: Logical modelling of delay degradation effect in static CMOS gates. IEE Proc. Circuits Devices Syst. 147(2), 107–117 (2000)
Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on Streams, Interfaces, and Refinement. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0091-5
Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE Micro 23(4), 14–19 (2003)
Daliot, A., Dolev, D., Parnas, H.: Self-stabilizing pulse synchronization inspired by biological pacemaker networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 32–48. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45032-7_3
Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. CACM 17(11), 643–644 (1974)
Dixit, A., Wood, A.: The impact of new technology on soft error rates. In: Proceedings of IRPS, pp. 5B.4.1–5B.4.7 (2011)
Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for distributed consensus. JACM 34(1), 77–97 (1987)
Dolev, D., Függer, M., Lenzen, C., Perner, M., Schmid, U.: HEX: scaling honeycombs is easier than scaling clock trees. In: Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2013), pp. 164–175 (2013)
Dolev, D., Függer, M., Lenzen, C., Posch, M., Schmid, U., Steininger, A.: Rigorously modeling self-stabilizing fault-tolerant circuits: an ultra-robust clocking scheme for systems-on-chip. JCSS 80(4), 860–900 (2014)
Dolev, D., Függer, M., Lenzen, C., Schmid, U.: Fault-tolerant algorithms for tick-generation in asynchronous logic: robust pulse generation. J. ACM 61(5), 30:1–30:74 (2014). https://doi.org/10.1145/2560561
Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. JACM 35(2), 288–323 (1988)
Fischer, M.J.: The consensus problem in unreliable distributed systems (a brief survey). In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 127–140. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12689-9_99
Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. JACM 32(2), 374–382 (1985)
Friedrichs, S., Függer, M., Lenzen, C.: Metastability-containing circuits. IEEE Trans. Comput. 67(8), 1167–1183 (2018). https://doi.org/10.1109/TC.2018.2808185. https://doi.org/10.1109/TC.2018.2808185
Fuchs, G., Steininger, A.: VLSI implementation of a distributed algorithm for fault-tolerant clock generation. J. Electr. Comput. Eng. 2011, 936712 (2011)
Függer, M., Najvirt, R., Nowak, T., Schmid, U.: A faithful binary circuit model. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2784–2797 (2020). https://doi.org/10.1109/TCAD.2019.2937748
Függer, M., Kushwaha, M., Nowak, T.: Digital circuit design for biological and silicon computers. In: Singh, V. (ed.) Advances in Synthetic Biology, pp. 153–171. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0081-7_9
Függer, M., Nowak, T., Schmid, U.: Unfaithful glitch propagation in existing binary circuit models. IEEE Trans. Comput. 65(3), 964–978 (2016). https://doi.org/10.1109/TC.2015.2435791. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp= &arnumber=7110587
Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and systems-on-chip. Distrib. Comput. 24(6), 323–355 (2012)
Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)
Gorochowski, T.E., et al.: Genetic circuit characterization and debugging using RNA-SEQ. Mol. Syst. Biol. 13(11), 952 (2017)
Hasty, J., McMillen, D., Collins, J.J.: Engineered gene circuits. Nature 420, 224–230 (2002)
International Technology Roadmap for Semiconductors (2012). http://www.itrs.net
Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Morgan & Claypool Publishers, San Francisco (2006)
Koren, I., Koren, Z.: Defect tolerance in VLSI circuits: techniques and yield analysis. Proc. IEEE 86(9), 1819–1838 (1998). https://doi.org/10.1109/5.705525
Lamport, L.: Time, clocks, and the ordering of events in a distributed system. CACM 21(7), 558–565 (1978)
Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–923 (1994)
Lee, E.A., Varaiya, P.: Structure and Interpretation of Signals and Systems, 2nd edn. LeeVaraiya.org (2011)
Lynch, N., Vaandrager, F.: Forward and backward simulations, I: untimed systems. Inf. Comput. 121(2), 214–233 (1995)
Lynch, N., Vaandrager, F.: Forward and backward simulations, II: timing-based systems. Inf. Comput. 128(1), 1–25 (1996)
Marino, L.: General theory of metastable operation. IEEE Trans. Comput. C30(2), 107–115 (1981)
Maza, M.S., Aranda, M.L.: Analysis of clock distribution networks in the presence of crosstalk and groundbounce. In: Proceedings of ICECS, pp. 773–776 (2001)
Nielsen, A.A., et al.: Genetic circuit design automation. Science 352(6281), aac7341 (2016)
Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. JACM 27, 228–234 (1980)
Peercy, M., Banerjee, P.: Fault tolerant VLSI systems. Proc. IEEE 81(5), 745–758 (1993)
Santos-Moreno, J., Tasiudi, E., Stelling, J., Schaerli, Y.: Multistable and dynamic CRISPRI-based synthetic circuits. Nat. Commun. 11(1), 1–8 (2020)
Sivan, E., Parnas, H., Dolev, D.: Fault tolerance in the cardiac ganglion of the lobster. Biol. Cybern. 81(1), 11–23 (1999)
Stricker, J., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S., Hasty, J.: A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008)
Sutherland, I.E.: Micropipelines. CACM 32(6), 720–738 (1989)
Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)
Unger, S.H.: Asynchronous sequential switching circuits with unrestricted input changes. IEEE Trans. Comput. 20(12), 1437–1444 (1971)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Függer, M., Lenzen, C., Schmid, U. (2022). On Specifications and Proofs of Timed Circuits. In: Raskin, JF., Chatterjee, K., Doyen, L., Majumdar, R. (eds) Principles of Systems Design. Lecture Notes in Computer Science, vol 13660. Springer, Cham. https://doi.org/10.1007/978-3-031-22337-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-22337-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22336-5
Online ISBN: 978-3-031-22337-2
eBook Packages: Computer ScienceComputer Science (R0)