Nothing Special   »   [go: up one dir, main page]

Skip to main content

TIDE: A Novel Approach to Constructing Timed-Release Encryption

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13494))

Included in the following conference series:

Abstract

In ESORICS 2021, Chvojka et al. introduced the idea of taking a time-lock puzzle and using its solution to generate the keys of a public key encryption (PKE) scheme [12]. They use this to define a timed-release encryption (TRE) scheme, in which the secret key is encrypted ‘to the future’ using a time-lock puzzle, whilst the public key is published. This allows multiple parties to encrypt a message to the public key of the PKE scheme. Then, once a solver has spent a prescribed length of time evaluating the time-lock puzzle, they obtain the secret key and hence can decrypt all of the messages.

In this work we introduce TIDE (TIme Delayed Encryption), a novel approach to constructing timed-release encryption based upon the RSA cryptosystem, where instead of directly encrypting the secret key to the future, we utilise number-theoretic techniques to allow the solver to factor the RSA modulus, and hence derive the decryption key. We implement TIDE on a desktop PC and on Raspberry Pi devices validating that TIDE is both efficient and practically implementable. We provide evidence of practicality with an extensive implementation study detailing the source code and practical performance of TIDE.

Independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [12] they offer a generalised version of this definition, to incorporate what they define sequential timed-release encryption. This is beyond the scope of this work, and we instead specify the “non-sequential” case.

References

  1. Ausubel, L.: A generalized Vickrey auction. Econo0 metrica (1999)

    Google Scholar 

  2. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  3. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (2016)

    Google Scholar 

  4. Blass, E., Kerschbaum, F.: BOREALIS: building block for sealed bid auctions on blockchains. In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security (2020)

    Google Scholar 

  5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. J. Comput. 15(2), 364–383 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Blume, A., Heidhues, P.: All equilibria of the Vickrey auction. J. Econ. Theory 114(1), 170–177 (2004)

    Article  MATH  Google Scholar 

  7. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  8. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

    Chapter  Google Scholar 

  9. Brandt, F.: Auctions. In: Handbook of Financial Cryptography and Security. Chapman and Hall/CRC (2010)

    Google Scholar 

  10. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_11

    Chapter  Google Scholar 

  11. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005). https://doi.org/10.1007/11602897_25

    Chapter  MATH  Google Scholar 

  12. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable timed-release encryption and sequential time-lock puzzles (extended abstract). In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 64–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_4

    Chapter  Google Scholar 

  13. Cohen, B., Pietrzak, K.: The chia network blockchain (2019)

    Google Scholar 

  14. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  15. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective. Springer, New York (2005). https://doi.org/10.1007/0-387-28979-8

    Book  MATH  Google Scholar 

  16. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_5

    Chapter  Google Scholar 

  17. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_10

    Chapter  Google Scholar 

  18. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 447–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_15

    Chapter  Google Scholar 

  19. Friedlander, J., Pomerance, C., Shparlinski, I.: Period of the power generator and small values of Carmichael’s function. Math. Comput. 70, 1591–1605 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_16

    Chapter  Google Scholar 

  21. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum blockchain. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 265–278. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_18

    Chapter  Google Scholar 

  22. Goodstein, R.L.: Boolean Algebra. Dover Publications (2007)

    Google Scholar 

  23. Griffin, F., Shparlinski, I.: On the linear complexity profile of the power generator. IEEE Trans. Inf. Theory 46(6), 2159–2162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021)

    Google Scholar 

  25. Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 72–86. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4_6

    Chapter  Google Scholar 

  26. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press (2014)

    Google Scholar 

  27. Liu, J., Garcia, F., Ryan, M.: Time-release protocol from bitcoin and witness encryption for sat. Korean Circ. J. 40(10), 530–535 (2015)

    Google Scholar 

  28. Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A.: TIDE: a novel approach to constructing timed-release encryption. Cryptology ePrint Archive (2021)

    Google Scholar 

  29. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_22

    Chapter  Google Scholar 

  30. Mao, W.: Timed-release cryptography. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 342–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X_27

    Chapter  Google Scholar 

  31. Miller, G.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13(3), 300–317 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical Computer Science Conference, ITCS 2019 (2019)

    Google Scholar 

  33. Rabin, M.: Digitalized signatures and public-key functions as intractable as factorization. In: MIT/LCS/TR-212. MIT Laboratory for Computer Science (1979)

    Google Scholar 

  34. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto. In: MIT/LCS/TR-684. MIT Laboratory for Computer Science (1996)

    Google Scholar 

  36. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1_28

    Chapter  Google Scholar 

  37. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)

    Article  MathSciNet  Google Scholar 

  38. Zhandry, M.: On ELFs, deterministic encryption, and correlated-input security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelique Faye Loe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A. (2022). TIDE: A Novel Approach to Constructing Timed-Release Encryption. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds) Information Security and Privacy. ACISP 2022. Lecture Notes in Computer Science, vol 13494. Springer, Cham. https://doi.org/10.1007/978-3-031-22301-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22301-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22300-6

  • Online ISBN: 978-3-031-22301-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics