Nothing Special   »   [go: up one dir, main page]

Skip to main content

Morphing Rectangular Duals

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2022)

Abstract

A rectangular dual of a plane graph G is a contact representations of G by interior-disjoint axis-aligned rectangles such that (i) no four rectangles share a point and (ii) the union of all rectangles is a rectangle. A rectangular dual gives rise to a regular edge labeling (REL), which captures the orientations of the rectangle contacts.

We study the problem of morphing between two rectangular duals of the same plane graph. If we require that, at any time throughout the morph, there is a rectangular dual, then a morph exists only if the two rectangular duals realize the same REL. Therefore, we allow intermediate contact representations of non-rectangular polygons of constant complexity. Given an n-vertex plane graph, we show how to compute in \(\mathcal {O}(n^3)\) time a piecewise linear morph that consists of \(\mathcal {O}(n^2)\) linear morphing steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput. 46(2), 824–852 (2017). https://doi.org/10.1137/16M1069171

    Article  MathSciNet  Google Scholar 

  2. Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G., Roselli, V.: Morphing contact representations of graphs. In: Barequet, G., Wang, Y. (eds.) Symp. Comput. Geom. (SoCG). LIPIcs, vol. 129, pp. 10:1–10:16. Schloss Dagstuhl - LZI (2019). https://doi.org/10.4230/LIPIcs.SoCG.2019.10

  3. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Optimal morphs of convex drawings. In: Arge, L., Pach, J. (eds.) Symp. Comput. Geom. (SoCG). LIPIcs, vol. 34, pp. 126–140. Schloss Dagstuhl - LZI (2015). https://doi.org/10.4230/LIPIcs.SOCG.2015.126

  4. Arseneva, E., et al.: Pole dancing: 3D morphs for tree drawings. J. Graph Alg. Appl. 23(3), 579–602 (2019). https://doi.org/10.7155/jgaa.00503

    Article  MathSciNet  Google Scholar 

  5. Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing schnyder drawings of Planar Triangulations. Discrete CMS. Geom. 61(1), 161–184 (2018). https://doi.org/10.1007/s00454-018-0018-9

  6. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph drawings. ACM Trans. Algorithms 9(4) (2013). https://doi.org/10.1145/2500118

  7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). https://doi.org/10.1016/S0022-0000(76)80045-1

    Article  MathSciNet  Google Scholar 

  8. Buchin, K., Speckmann, B., Verdonschot, S.: Evolution strategies for optimizing rectangular cartograms. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33024-7_3

    Chapter  Google Scholar 

  9. Cairns, S.S.: Deformations of plane rectilinear complexes. Amer. Math. Monthly 51(5), 247–252 (1944). https://doi.org/10.1080/00029890.1944.11999082

    Article  MathSciNet  Google Scholar 

  10. Chambers, E.W., Erickson, J., Lin, P., Parsa, S.: How to morph graphs on the torus. In: Marx, D. (ed.) Symp. Discrete Algorithms (SODA), pp. 2759–2778 (2021). https://doi.org/10.1137/1.9781611976465.164

  11. Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A.: Morphing rectangular duals (2022). https://doi.org/10.48550/ARXIV.2112.03040

  12. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_12

  13. Florisson, S., van Kreveld, M.J., Speckmann, B.: Rectangular cartograms: construction & animation. In: Mitchell, J.S.B., Rote, G. (eds.) ACM Symp. Comput. Geom. (SoCG), pp. 372–373 (2005). https://doi.org/10.1145/1064092.1064152

  14. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combin. Prob. Comput. 3(2), 233–246 (1994). https://doi.org/10.1017/S0963548300001139

    Article  MathSciNet  Google Scholar 

  15. Fusy, É.: Transversal structures on triangulations, with application to straight-line drawing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 177–188. Springer, Heidelberg (2006). https://doi.org/10.1007/11618058_17

    Chapter  Google Scholar 

  16. Fusy, É.: Transversal structures on triangulations: a combinatorial study and straight-line drawings. Discrete Math. 309(7), 1870–1894 (2009). https://doi.org/10.1016/j.disc.2007.12.093

  17. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969). https://doi.org/10.2307/2412323

    Article  Google Scholar 

  18. van Goethem, A., Speckmann, B., Verbeek, K.: Optimal morphs of planar orthogonal drawings II. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 33–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_3

    Chapter  Google Scholar 

  19. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22(6), 1218–1226 (1993). https://doi.org/10.1137/0222072

    Article  MathSciNet  Google Scholar 

  20. Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: rectangular map approximations. In: Ward, M.O., Munzner, T. (eds.) IEEE Symp. Inform. Vis. (InfoVis), pp. 33–40 (2004). https://doi.org/10.1109/INFVIS.2004.57

  21. Hoffmann, M., van Kreveld, M.J., Kusters, V., Rote, G.: Quality ratios of measures for graph drawing styles. In: Canadian Conf. Comput. Geom. (CCCG) (2014). http://www.cccg.ca/proceedings/2014/papers/paper05.pdf

  22. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoret. Comput. Sci. 172(1), 175–193 (1997). https://doi.org/10.1016/S0304-3975(95)00257-X

    Article  MathSciNet  Google Scholar 

  23. Kobourov, S.G., Landis, M.: Morphing planar graphs in spherical space. J. Graph Alg. Appl. 12(1), 113–127 (2008). https://doi.org/10.7155/jgaa.00162

    Article  MathSciNet  Google Scholar 

  24. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wiss. zu Leipzig. Math.-Phys. Klasse 88, pp. 141–164 (1936)

    Google Scholar 

  25. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Netw. 15(2), 145–157 (1985). https://doi.org/10.1002/net.3230150202

    Article  MathSciNet  Google Scholar 

  26. Leinwand, S.M., Lai, Y.: An algorithm for building rectangular floor-plans. In: 21st Design Automation Conference, pp. 663–664 (1984). https://doi.org/10.1109/DAC.1984.1585874

  27. Nusrat, S., Kobourov, S.G.: The state of the art in cartograms. Comput. Graph. Forum 35(3), 619–642 (2016). https://doi.org/10.1111/cgf.12932

    Article  Google Scholar 

  28. Purchase, Helen C.., Hoggan, Eve, Görg, Carsten: How Important is the mental map an empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, Michael, Wagner, Dorothea (eds.) GD 2006. LNCS, vol. 4372. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_19

  29. Raisz, E.: The rectangular statistical cartogram. Geogr. Review 24(2), 292–296 (1934). https://doi.org/10.2307/208794. http://www.jstor.org/stable/208794

  30. Steadman, P.: Graph theoretic representation of architectural arrangement. Archit. Res. Teach. 2(3) 161–172 (1973)

    Google Scholar 

  31. van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Comput. Geom. Theory Appl. 37(3), 175–187 (2007). https://doi.org/10.1016/j.comgeo.2006.06.002

    Article  MathSciNet  Google Scholar 

  32. Yeap, G.K.H., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM J. Discrete Math. 8(2), 258–280 (1995). https://doi.org/10.1137/S0895480191266700

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Klawitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A. (2023). Morphing Rectangular Duals. In: Angelini, P., von Hanxleden, R. (eds) Graph Drawing and Network Visualization. GD 2022. Lecture Notes in Computer Science, vol 13764. Springer, Cham. https://doi.org/10.1007/978-3-031-22203-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22203-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22202-3

  • Online ISBN: 978-3-031-22203-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics