Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Complexity of the Storyplan Problem

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2022)

Abstract

Motivated by dynamic graph visualization, we study the problem of representing a graph G in the form of a storyplan, that is, a sequence of frames with the following properties. Each frame is a planar drawing of the subgraph of G induced by a suitably defined subset of its vertices. Between two consecutive frames, a new vertex appears while some other vertices may disappear, namely those whose incident edges have already been drawn in at least one frame. In a storyplan, each vertex appears and disappears exactly once. For a vertex (edge) visible in a sequence of consecutive frames, the point (curve) representing it does not change throughout the sequence.

Note that the order in which the vertices of G appear in the sequence of frames is a total order. In the StoryPlan problem, we are given a graph and we want to decide whether there exists a total order of its vertices for which a storyplan exists. We prove that the problem is NP-complete, and complement this hardness with two parameterized algorithms, one in the vertex cover number and one in the feedback edge set number of G. Also, we prove that partial 3-trees always admit a storyplan, which can be computed in linear time. Finally, we show that the problem remains NP-complete in the case in which the total order of the vertices is given as part of the input and we have to choose how to draw the frames.

Research partially supported by MIUR grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”, Progetto RICBA21LG "Algoritmi, modelli e sistemi per la rappresentazione visuale di reti”, and the Vienna Science and Technology Fund (WWTF) grant ICT19-035.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding problems. Theoret. Comput. Sci. 575, 71–89 (2015). https://doi.org/10.1016/j.tcs.2014.11.016

    Article  MathSciNet  Google Scholar 

  2. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) EuroVis 2014. Eurographics Association (2014). https://doi.org/10.2312/eurovisstar.20141174

  3. Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P., Patrignani, M., Symvonis, A., Zweig, K.A.: Drawing trees in a streaming model. Inf. Process. Lett. 112(11), 418–422 (2012). https://doi.org/10.1016/j.ipl.2012.02.011

    Article  MathSciNet  Google Scholar 

  4. Binucci, C., Di Giacomo, E., Lenhart, W.J., Liotta, G., Montecchiani, F., Nöllenburg, M., Symvonis, A.: On the complexity of the storyplan problem. CoRR abs/2209.00453 (2022). https://arxiv.org/abs/2209.00453

  5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996). https://doi.org/10.1006/jagm.1996.0049

    Article  MathSciNet  Google Scholar 

  6. Borrazzo, M., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Graph stories in small area. J. Graph Algorithms Appl. 24(3), 269–292 (2020). https://doi.org/10.7155/jgaa.00530

    Article  MathSciNet  Google Scholar 

  7. Da Lozzo, G., Rutter, I.: Planarity of streamed graphs. Theoret. Comput. Sci. 799, 1–21 (2019). https://doi.org/10.1016/j.tcs.2019.09.029

    Article  MathSciNet  Google Scholar 

  8. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F., Tollis, I.G.: Techniques for edge stratification of complex graph drawings. J. Vis. Lang. Comput. 25(4), 533–543 (2014). https://doi.org/10.1016/j.jvlc.2014.05.001

    Article  Google Scholar 

  9. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 1–37 (2019). https://doi.org/10.1145/3301281

  10. Hong, S.-H., Tokuyama, T. (eds.): Beyond Planar Graphs. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5

    Book  Google Scholar 

  11. Monien, B., Sudborough, I.H.: Min Cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 58, 209–229 (1988). https://doi.org/10.1016/0304-3975(88)90028-X

    Article  MathSciNet  Google Scholar 

  12. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35(1), 39–61 (1983). https://doi.org/10.1016/0095-8956(83)90079-5

  13. Robertson, N., Seymour, P.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

  14. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013). https://doi.org/10.7155/jgaa.00298

    Article  MathSciNet  Google Scholar 

  15. Skambath, M., Tantau, T.: Offline drawing of dynamic trees: algorithmics and document integration. In: Hu, Y., Nöllenburg, M. (eds.) Graph Drawing and Network Visualization (GD’16). LNCS, vol. 9801, pp. 572–586. Springer (2016). https://doi.org/10.1007/978-3-319-50106-2_44

  16. Vehlow, C., Beck, F., Weiskopf, D.: Visualizing dynamic hierarchies in graph sequences. IEEE Trans. Vis. Comput. Graph. 22(10), 2343–2357 (2016). https://doi.org/10.1109/TVCG.2015.2507595

    Article  Google Scholar 

Download references

Acknowledgement

Research in this work started at the Bertinoro Workshop on Graph Drawing 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Di Giacomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binucci, C. et al. (2023). On the Complexity of the Storyplan Problem. In: Angelini, P., von Hanxleden, R. (eds) Graph Drawing and Network Visualization. GD 2022. Lecture Notes in Computer Science, vol 13764. Springer, Cham. https://doi.org/10.1007/978-3-031-22203-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22203-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22202-3

  • Online ISBN: 978-3-031-22203-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics