Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quasiplanar Graphs, String Graphs, and the Erdős-Gallai Problem

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13764))

Included in the following conference series:

Abstract

An r-quasiplanar graph is a graph drawn in the plane with no r pairwise crossing edges. Let \(s \ge 3\) be an integer and \(r=2^s\). We prove that there is a constant C such that every r-quasiplanar graph with \(n \ge r\) vertices has at most \(n\left( Cs^{-1}\log n\right) ^{2s-4}\) edges.

     A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every \(\epsilon >0\), there exists \(\delta >0\) such that every string graph with n vertices, whose chromatic number is at least \(n^{\epsilon }\) contains a clique of size at least \(n^{\delta }\). A clique of this size or a coloring using fewer than \(n^{\epsilon }\) colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings.

In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdős, Gallai, and Rogers. Given a \(K_r\)-free graph on n vertices and an integer \(s<r\), at least how many vertices can we find such that the subgraph induced by them is \(K_s\)-free?

J. Fox—Supported by a Packard Fellowship and by NSF award DMS-1855635.

J. Pach—Supported by NKFIH grants K-131529, Austrian Science Fund Z 342-N31, and ERC Advanced Grant “GeoScape.”

A. Suk—Supported by an NSF CAREER award and NSF award DMS-1952786.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete Comput. Geom. 41, 365–375 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ackerman, E.: Quasi-planar graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 31–45. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_3

    Chapter  Google Scholar 

  3. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory, Ser. A 114(3), 563–571 (2007)

    Google Scholar 

  4. Agarwal, P., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17, 1–9 (1997)

    Article  MathSciNet  Google Scholar 

  5. Brass, P., Moser, W.O.J., Pach, J.: Research problems in discrete geometry. Springer (2005)

    Google Scholar 

  6. Burling, J.: On coloring problems of families of polytopes. (Ph.D. thesis), University of Colorado, Boulder 1(5) (1965)

    Google Scholar 

  7. Davies, J., McCarty, R.: Circle graphs are quadratically \(\chi \) -bounded. Bull. London Math. Soc. 53, 673–679 (2021)

    Article  MathSciNet  Google Scholar 

  8. Davis, J.: Improved bounds for colouring circle graphs. Preprint, arXiv:2107.03585 (2021)

  9. Dudek, A., Retter, T., Rödl, V.: On generalized ramsey numbers of erdos and rogers. J. Combin. Theory Ser. B 109, 213–227 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dudek, A., Rödl, V.: On \(k_s\)-free subgraphs in \(k_{s+k}\)-free graphs and vertex folkman numbers. Combinatorica 31, 39–53 (2011)

    Article  MathSciNet  Google Scholar 

  11. Erdős, P., Gallai, T.: On the minimal number of vertices representing the edges of a graph. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 181–203 (1961)

    Google Scholar 

  12. Erdős, P., Rogers, C.A.: The construction of certain graphs. Canad. J. Math. 14, 702–707 (1962)

    Article  MathSciNet  Google Scholar 

  13. Fox, J., Pach, J.: Separator theorems and turán-type results for planar intersection graphs. Adv. Math. 219, 1070–1080 (2008)

    Article  MathSciNet  Google Scholar 

  14. Fox, J., Pach, J.: A separator theorem for string graphs and its applications. Combin. Probab. Comput. 19, 371–390 (2010)

    Article  MathSciNet  Google Scholar 

  15. Fox, J., Pach, J.: Coloring \(k_k\)-free intersection graphs of geometric objects in the plane. European J. Combin. 33, 853–866 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fox, J., Pach, J.: String graphs and incomparability graphs. Adv. Math. 230, 1381–1401 (2012)

    Article  MathSciNet  Google Scholar 

  17. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. Combin. Probab. Comput. 23, 66–74 (2014)

    Article  MathSciNet  Google Scholar 

  18. Gyárfás, A.: On the chromatic number of multiple interval graphs and overlap graphs. Discrete Math. 55, 161–166 (1985)

    Article  MathSciNet  Google Scholar 

  19. Janzer, O., Gowers, W.T.: Improved bounds for the erdos-rogers function. Adv. Comb. 3, 1–27 (2020)

    MathSciNet  Google Scholar 

  20. Kostochka, A.: O verkhnikh otsenkakh khromaticheskogo chisla grafov (on upper bounds for the chromatic number of graphs). In: Dementyev, V.T. (ed.) Modeli i metody optimizacii, Akad. Nauk SSSR SO 10, pp. 204–226 (1988)

    Google Scholar 

  21. Kostochka, A., Kratochvíl, J.: Covering and coloring polygon-circle graphs. Discrete Math. 163, 299–305 (1997)

    Article  MathSciNet  Google Scholar 

  22. Krivelevich, M.: \(k_s\)-free graphs without large \(k_r\)-free subgraphs. Combin. Probab. Comput. 3, 349–354 (1994)

    Article  MathSciNet  Google Scholar 

  23. Krivelevich, M.: Bounding ramsey numbers through large deviation inequalities. Random Struct. Algorithms 7, 145–155 (1995)

    Article  MathSciNet  Google Scholar 

  24. Lee, J.: Separators in region intersection graphs. ITCS 7, 1:1–1:8 (2017). Full version: arXiv:1608.01612

  25. Lipton, R., Rose, D., Tarjan, R.: Generalized nested dissections. SIAM J. Numer. Anal. 16, 346–358 (1979)

    Article  MathSciNet  Google Scholar 

  26. McGuinness, S.: Colouring arcwise connected sets in the plane, i. Graphs Combin. 16, 429–439 (2000)

    Article  MathSciNet  Google Scholar 

  27. Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 221–232. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44400-8_24

    Chapter  Google Scholar 

  28. Pawlik, A., Kozik, J., Krawczyk, T., Lasoń, M., Micek, P., Trotter, W., Walczak, B.: Triangle-free intersection graphs of line segments with large chromatic number. J. Combin. Theory Ser. B 105, 6–10 (2014)

    Article  MathSciNet  Google Scholar 

  29. Rok, A., Walczak, B.: Coloring curves that cross a fixed curve. Discrete Comput. Geom. 61, 830–851 (2019)

    Article  MathSciNet  Google Scholar 

  30. Rok, A., Walczak, B.: Outerstring graphs are \(\chi \)-bounded. SIAM J. Discrete Math. 13, 2181–2199 (2019)

    Article  MathSciNet  Google Scholar 

  31. Sudakov, B.: Large \(k_r\)-free subgraphs in \(k_s\)-free graphs and some other ramsey-type problems. Random Struct. Algorithms 26, 253–265 (2005)

    Article  Google Scholar 

  32. Suk, A.: Coloring intersection graphs of \(x\)-monotone curves in the plane. Combinatorica 34, 487–505 (2014)

    Article  MathSciNet  Google Scholar 

  33. Tomon, I.: String graphs have the erdos-hajnal property. arXiv preprint. arXiv:2002.10350 (2020)

  34. Valtr, P.: On geometric graphs with no \(k\) pairwise parallel edges. Discrete Comput. Geom. 19, 461–469 (1998)

    Article  MathSciNet  Google Scholar 

  35. Walczak, B.: Triangle-free geometric intersection graphs with no large independent sets. Discrete Comput. Geom. 53, 221–225 (2015)

    Article  MathSciNet  Google Scholar 

  36. Wolfovitz, G.: \(k_4\)-free graphs without large induced triangle-free subgraphs. Combinatorica 33, 623–631 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We are grateful to Zach Hunter for carefully reading our manuscript and pointing out several mistakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Suk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fox, J., Pach, J., Suk, A. (2023). Quasiplanar Graphs, String Graphs, and the Erdős-Gallai Problem. In: Angelini, P., von Hanxleden, R. (eds) Graph Drawing and Network Visualization. GD 2022. Lecture Notes in Computer Science, vol 13764. Springer, Cham. https://doi.org/10.1007/978-3-031-22203-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22203-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22202-3

  • Online ISBN: 978-3-031-22203-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics