Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Binarization of Metal Nameplate Images Using the Pixel Voting Approach

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2022)

Abstract

In the paper, an application of the recently proposed approach to hybrid image binarization based on pixel voting is considered for industrial images. Since such images typically contain the text embossed or engraved in metal nameplates, often non-uniformly illuminated, a proper binarization of such images is usually much harder than for scanned document images, or even for the photos of text documents. Assuming that no single method would be the best solution for such images, a hybrid solution, based on the combination of multiple algorithms using pixel voting, has been recently proposed for document images. The obtained experimental results for the dataset of “industrial” images confirm the usefulness of this approach and the proposed combinations of previously developed algorithms outperform the other methods, making it possible to increase the OCR accuracy also for demanding images containing light reflections and shadows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/masyagin1998/robin.

  2. 2.

    https://github.com/sliedes/binarize.

References

  1. Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graphics Tools 12(2), 13–21 (2007)

    Article  Google Scholar 

  2. Chou, C.H., Lin, W.H., Chang, F.: A binarization method with learning-built rules for document images produced by cameras. Pattern Recognit. 43(4), 1518–1530 (2010)

    Article  MATH  Google Scholar 

  3. Gatos, B., Pratikakis, I., Perantonis, S.J.: An adaptive binarization technique for low quality historical documents. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Marinai, S., Dengel, A.R. (eds.) Document Analysis Systems VI. Lecture Notes in Computer Science, vol. 3163, pp. 102–113. Springer, Berlin (2004)

    Chapter  MATH  Google Scholar 

  4. Jia, F., Shi, C., He, K., Wang, C., Xiao, B.: Document image binarization using structural symmetry of strokes. In: 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 411–416. IEEE, Shenzhen, China (2016)

    Google Scholar 

  5. Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of Niblack inspired binarization methods for ancient documents. In: Berkner, K., Likforman-Sulem, L. (eds.) Document Recognition and Retrieval XVI, p. 72470U. San Jose, CA (2009)

    Google Scholar 

  6. Lins, R.D., de Almeida, M.M., Bernardino, R.B., Jesus, D., Oliveira, J.M.: Assessing binarization techniques for document images. In: Proceedings of the 2017 ACM Symposium on Document Engineering. ACM (2017)

    Google Scholar 

  7. Lins, R.D., Bernardino, R.B., Barboza, R., Oliveira, R.: The winner takes it all: Choosing the “best” binarization algorithm for photographed documents. In: Uchida, S., Barney, E., Eglin, V. (eds.) Document Analysis Systems, pp. 48–64. Springer International Publishing (2022)

    Google Scholar 

  8. Lins, R.D., Bernardino, R.B., Smith, E.B., Kavallieratou, E.: ICDAR 2021 competition on time-quality document image binarization. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) Document Analysis and Recognition-ICDAR 2021. Lecture Notes in Computer Science, vol. 12824, pp. 708–722. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  9. Michalak, H., Okarma, K.: Region based adaptive binarization for optical character recognition purposes. In: International Interdisciplinary PhD Workshop (IIPhDW), pp. 361–366. IEEE, Świnoujście, Poland (2018)

    Google Scholar 

  10. Michalak, H., Okarma, K.: Adaptive image binarization based on multi-layered stack of regions. In: Vento, M., Percannella, G. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 11679, pp. 281–293. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  11. Michalak, H., Okarma, K.: Fast binarization of unevenly illuminated document images based on background estimation for optical character recognition purposes. J. Univers. Comput. Sci. 25(62), 627–646 (2019)

    Google Scholar 

  12. Michalak, H., Okarma, K.: Improvement of image binarization methods using image preprocessing with local entropy filtering for alphanumerical character recognition purposes. Entropy 21(6), 562 (2019)

    Article  MathSciNet  Google Scholar 

  13. Michalak, H., Okarma, K.: Robust combined binarization method of non-uniformly illuminated document images for alphanumerical character recognition. Sensors 20(10), 2914 (2020)

    Article  Google Scholar 

  14. Michalak, H., Okarma, K.: A performance improvement of deep learning based binarization of degraded document images with the use of the voting approach. In: Proceedings of the 3rd Polish Conference on Artificial Intelligence (PP-RAI), pp. 8–11. Gdynia Maritime University, Gdynia, Poland (2022)

    Google Scholar 

  15. Niblack, W.: An Introduction to Digital Image Processing. Prentice-Hall Inc, USA (1990)

    Google Scholar 

  16. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  17. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)

    Article  Google Scholar 

  18. Tensmeyer, C., Martinez, T.: Historical document image binarization: A review. SN Comput. Sci. 1(3), 173 (2020)

    Article  Google Scholar 

  19. Wellner, P.D.: Adaptive Thresholding for the DigitalDesk. Technical Report EPC-1993-110, Rank Xerox Research Centre (1993)

    Google Scholar 

  20. Wolf, C., Jolion, J.M.: Extraction and recognition of artificial text in multimedia documents. Formal Pattern Anal. Appl. 6(4) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Okarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michalak, H., Okarma, K. (2023). Adaptive Binarization of Metal Nameplate Images Using the Pixel Voting Approach. In: Chmielewski, L.J., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2022. Lecture Notes in Networks and Systems, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-031-22025-8_10

Download citation

Publish with us

Policies and ethics