Abstract
Organic Computing enables self-* properties in technical systems for mastering them in the face of complexity and for improving robustness and efficiency. Key technology for self-improving adaptation decisions is reinforcement learning (RL). In this paper, we argue that traditional deep RL concepts are not applicable due to their limited interpretability. In contrast, approaches from the field of rule-based evolutionary RL are less powerful. We propose to fuse both technical concepts while maintaining their advantages – allowing for an applicability especially suited for Organic Computing applications. We present initial steps and the first evaluation of standard RL scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bishop, J.: xcsfrl. https://github.com/jtbish/xcsfrl. Accessed 09 May 2022
Bishop, J.T., Gallagher, M.: Optimality-based analysis of XCSF compaction in discrete reinforcement learning. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 471–484. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_33
Bodnar, C., Day, B., Lió, P.: Proximal distilled evolutionary reinforcement learning. In: Proceedings of AAAI Conference on AI, vol. 34(4), pp. 3283–3290 (2020)
Bu, S.-J., Cho, S.-B.: A hybrid system of deep learning and learning classifier system for database intrusion detection. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 615–625. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_52
Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In: Proceedings of GECCO 2002, p. 7 (2002)
Butz, M., Wilson, S.W.: An algorithmic description of XCS. In: Revised Papers from the 3rd IWLCS, pp. 253–272. IWLCS 2000, Springer (2000). https://doi.org/10.1007/s005000100111
Butz, M., Kovacs, T., Lanzi, P., Wilson, S.: Toward a theory of generalization and learning in XCS. IEEE Trans. on Evol. Comp. 8(1), 28–46 (2004)
Dam, H., Abbass, H., Lokan, C.: Xin Yao: neural-based learning classifier systems. IEEE Trans. Knowl. Data Eng. 20(1), 26–39 (2008)
Giani, A., Baiardi, F., Starita, A.: PANIC: a parallel evolutionary rule based system. In: Proceedings of (EP)95, pp. 753–771 MIT Press (1995)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)
Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In: Waterman, D., Haey-Roth, F. (eds.) Pattern-directed inference systems, pp. 313–329. Academic Press (1978)
Lanzi, P.L., Loiacono, D.: XCSF with neural prediction. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 2270–2276. IEEE (2006)
Lanzi, P.L., Loiacono, D.: Classifier systems that compute action mappings. In: GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1822–1829 (2007)
Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending XCSF beyond linear approximation. In: GECCO 2005: Proceedings of the 7th annual conference on Genetic and evolutionary computation, pp. 1827–1834 (2005)
Loiacono, D., Lanzi, P.L.: Evolving neural networks for classifier prediction with XCSF. Technical report, AIRLab, Milano, Italy and IlliGAL, University of Illinois at Urbana Champaign (2014)
Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in the Real World. Birkhäuser (2017)
O’Hara, T., Bull, L.: Prediction calculation in accuracy-based neural learning classifier systems. UWELCSG 04–004, UWE Bristol, England (2004)
O’Hara, T., Bull, L.: A memetic accuracy-based neural learning classifier system. In: Proceedings of CEC05, vol. 3, pp. 2040–2045. IEEE (2005)
O’Hara, T., Bull, L.: Building anticipations in an accuracy-based learning classifier system by use of an artificial neural network. In: 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2046–2052 (2005). ISSN: 1941–0026
O’Hara, T., Bull, L.: Backpropagation in accuracy-based neural learning classifier systems. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) Learning Classifier Systems, pp. 25–39. Springer, Cham (2007)
OpenAI: frozen lake - gym documentation. https://www.gymlibrary.ml/environments/toy_text/frozen_lake/. Accessed 15 May 2022
Preen, R.J., Bull, L.: Deep learning with a classifier system: initial results. arXiv:2103.01118 [cs] (2021)
Preen, R.J., Pätzel, D.: XCSF. https://github.com/rpreen/xcsf (2021). Accessed 03 May 2022
Preen, R.J., Wilson, S.W., Bull, L.: Autoencoding with a classifier system. IEEE Trans. Evol. Comput. 25, 1079–1090 (2021)
Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Organic Traffic Control. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing — A Paradigm Shift for Complex Systems, vol. 1, pp. 431–446. Springer, Cham (2011). https://doi.org/10.1007/978-3-0348-0130-0_28
Rosenbauer, L., Stein, A., Maier, R., Pätzel, D., Hähner, J.: XCS as a reinforcement learning approach to automatic test case prioritization. In: Proceedings of GECCO 2020, pp. 1798–1806 (2020)
Schönberner, C.: Deep Reinforcement Learning with a Classifier System. Master’s thesis, Kiel University, Kiel, Germany (2022)
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359. Nature Publishing Group (2017)
Stein, A., Maier, R., Rosenbauer, L., Hähner, J.: XCS classifier system with experience replay. In: Proceedings of GECCO20, pp. 404–413. ACM (2020)
Stein, A., Rauh, D., Tomforde, S., Hähner, J.: Interpolation in the extended classifier system: An architectural perspective. J. Sys. Arch. 75, 79–94 (2017)
Stein, A., Rudolph, S., Tomforde, S., Hähner, J.: Self-learning smart cameras - harnessing the generalization capability of XCS. In: IJCCI17, pp. 129–140 (2017)
Tomforde, S., Hähner, J.: Organic network control: turning standard protocols into evolving systems. In: Lio, P., Verma, D. (eds.) Biologically Inspired Networking and Sensing - Algorithms and Architectures, pp. 11–35. IGI Global (2012)
Tomforde, S., Hähner, J., Sick, B.: Interwoven systems. Inform. Spektrum 37(5), 483–487 (2014)
Tomforde, S., Prothmann, H., Branke, J., et al.: Observation and Control of Organic Systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing — A Paradigm Shift for Complex Systems, pp. 325–338. Springer, Cham (2011). https://doi.org/10.1007/978-3-0348-0130-0_21
Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight. arXiv:1701.08125v1 [cs.MA] (2017)
von Mammen, S., Tomforde, S., Höhner, J., et al.: OCbotics: an organic computing approach to collaborative robotic swarms. In: 2014 IEEE Symposium on Swarm Intelligence, pp. 1–8 (2014)
Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995)
Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–219. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45027-0_11
Wilson, S.W.: Classifiers that approximate functions. Nat. Comput. 1(2), 211–234 (2002)
Wurman, P.R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T.J., et al.: Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 602(7896), 223–228 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schönberner, C., Tomforde, S. (2022). Deep Reinforcement Learning with a Classifier System – First Steps. In: Schulz, M., Trinitis, C., Papadopoulou, N., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2022. Lecture Notes in Computer Science, vol 13642. Springer, Cham. https://doi.org/10.1007/978-3-031-21867-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-21867-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21866-8
Online ISBN: 978-3-031-21867-5
eBook Packages: Computer ScienceComputer Science (R0)