Abstract
Privacy-preserving data aggregation has been widely recognized as a key enabling functionality in wireless sensor networks to allow the base station to learn valuable statistics of the sensed data while protecting individual sensor node’s data privacy. Existing privacy-preserving data aggregation schemes all target simple statistic functions such as SUM, COUNT, and MAX/MIN. In contrast, a quantile summary allows a base station to extract the \(\phi \)-quantile for any \(0<\phi <1\) of all the sensor readings in the network and can thus provide a more accurate characterization of the data distribution. Unfortunately, how to realize privacy-preserving quantile summary aggregation remains an open challenge. In this paper, we introduce the design and evaluation of PrivQSA, a novel privacy-preserving quantile summary aggregation scheme for wireless sensor networks, which enables efficient quantile summary aggregation while guaranteeing \(\epsilon \)-Local Differential Privacy for individual sensors. Detailed simulation studies confirm the efficacy and efficiency of the proposed protocol.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9
Castelluccia, C., Chan, A.C., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 5(3), 1–36 (2009)
Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data in wireless sensor networks. In: IEEE Mobiquitous 2005, pp. 109–117. IEEE (2005)
Dwork, C.: Differential privacy. p. 1–12. ICALP 2006, Springer-Verlag, Berlin (2006)
Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: ACM SIGMOD 2001, p. 58–66. Santa Barbara, CA (2001)
Greenwald, M.B., Khanna, S.: Power-conserving computation of order-statistics over sensor networks. In: ACM PODS, pp. 275–285 (2004)
Groat, M.M., Hey, W., Forrest, S.: Kipda: \(k\)-indistinguishable privacy-preserving data aggregation in wireless sensor networks. In: IEEE INFOCOM, pp. 2024–2032. IEEE (2011)
Haeupler, B., Mohapatra, J., Su, H.H.: Optimal gossip algorithms for exact and approximate quantile computations. In: ACM PODC, pp. 179–188 (2018)
He, W., Liu, X., Nguyen, H., Nahrstedt, K., Abdelzaher, T.: PDA: privacy-preserving data aggregation in wireless sensor networks. In: IEEE INFOCOM, pp. 2045–2053. IEEE (2007)
Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile computation in sensor networks. In: ACM SIGMOD, pp. 745–756 (2011)
Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing. In: 2012 20th IEEE ICNP, pp. 1–10. IEEE (2012)
Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 1(1) (2009)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: IEEE FOCS (2007)
Naranjo, J.A., Casado, L.G., Jelasity, M.: Asynchronous privacy-preserving iterative computation on peer-to-peer networks. Computing 94(8–10), 763–782 (2012)
Ozdemir, S., Xiao, Y.: Secure data aggregation in wireless sensor networks: a comprehensive overview. Comput. Netw. 53(12), 2022–2037 (2009)
Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey. IEEE Commun. Surv. Tutorials 8(4), 48–63 (2006)
Sun, J., Zhang, R., Zhang, Y.: PriStream: privacy-preserving distributed stream monitoring of thresholded PERCENTILE statistics. In: IEEE INFOCOM, pp. 1–9 (2016)
Shi, J., Zhang, R., Liu, Y., Zhang, Y.: Prisense: privacy-preserving data aggregation in people-centric urban sensing systems. In: IEEE INFOCOM, pp. 1–9. (2010)
Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new aggregation techniques for sensor networks. In: SenSys, pp. 239–249 (2004)
Westhoff, D., Girao, J., Acharya, M.: Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation. IEEE Trans. Mob. Comput. 5(10), 1417–1431 (2006)
Xue, M., Papadimitriou, P., Raïssi, C., Kalnis, P., Pung, H.K.: Distributed privacy preserving data collection. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 93–107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20149-3_9
Zhang, K., Han, Q., Cai, Z., Yin, G.: Rippas: a ring-based privacy-preserving aggregation scheme in wireless sensor networks. Sensors 17(2), 300 (2017)
Acknowledgements
The authors would like to thank the anonymous reviewers for their constructive comments and helpful advice. This work was supported in part by the US National Science Foundation under grants CNS-1651954 (CAREER), CNS-1933047, and CNS-1718078.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aseeri, A., Zhang, R. (2022). Locally Differentially Private Quantile Summary Aggregation in Wireless Sensor Networks. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13757. Springer, Cham. https://doi.org/10.1007/978-3-031-21743-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-21743-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21742-5
Online ISBN: 978-3-031-21743-2
eBook Packages: Computer ScienceComputer Science (R0)