Nothing Special   »   [go: up one dir, main page]

Skip to main content

Locally Differentially Private Quantile Summary Aggregation in Wireless Sensor Networks

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

Privacy-preserving data aggregation has been widely recognized as a key enabling functionality in wireless sensor networks to allow the base station to learn valuable statistics of the sensed data while protecting individual sensor node’s data privacy. Existing privacy-preserving data aggregation schemes all target simple statistic functions such as SUM, COUNT, and MAX/MIN. In contrast, a quantile summary allows a base station to extract the \(\phi \)-quantile for any \(0<\phi <1\) of all the sensor readings in the network and can thus provide a more accurate characterization of the data distribution. Unfortunately, how to realize privacy-preserving quantile summary aggregation remains an open challenge. In this paper, we introduce the design and evaluation of PrivQSA, a novel privacy-preserving quantile summary aggregation scheme for wireless sensor networks, which enables efficient quantile summary aggregation while guaranteeing \(\epsilon \)-Local Differential Privacy for individual sensors. Detailed simulation studies confirm the efficacy and efficiency of the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9

    Chapter  Google Scholar 

  2. Castelluccia, C., Chan, A.C., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 5(3), 1–36 (2009)

    Article  Google Scholar 

  3. Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data in wireless sensor networks. In: IEEE Mobiquitous 2005, pp. 109–117. IEEE (2005)

    Google Scholar 

  4. Dwork, C.: Differential privacy. p. 1–12. ICALP 2006, Springer-Verlag, Berlin (2006)

    Google Scholar 

  5. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: ACM SIGMOD 2001, p. 58–66. Santa Barbara, CA (2001)

    Google Scholar 

  6. Greenwald, M.B., Khanna, S.: Power-conserving computation of order-statistics over sensor networks. In: ACM PODS, pp. 275–285 (2004)

    Google Scholar 

  7. Groat, M.M., Hey, W., Forrest, S.: Kipda: \(k\)-indistinguishable privacy-preserving data aggregation in wireless sensor networks. In: IEEE INFOCOM, pp. 2024–2032. IEEE (2011)

    Google Scholar 

  8. Haeupler, B., Mohapatra, J., Su, H.H.: Optimal gossip algorithms for exact and approximate quantile computations. In: ACM PODC, pp. 179–188 (2018)

    Google Scholar 

  9. He, W., Liu, X., Nguyen, H., Nahrstedt, K., Abdelzaher, T.: PDA: privacy-preserving data aggregation in wireless sensor networks. In: IEEE INFOCOM, pp. 2045–2053. IEEE (2007)

    Google Scholar 

  10. Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile computation in sensor networks. In: ACM SIGMOD, pp. 745–756 (2011)

    Google Scholar 

  11. Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing. In: 2012 20th IEEE ICNP, pp. 1–10. IEEE (2012)

    Google Scholar 

  12. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 1(1) (2009)

    Google Scholar 

  13. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: IEEE FOCS (2007)

    Google Scholar 

  14. Naranjo, J.A., Casado, L.G., Jelasity, M.: Asynchronous privacy-preserving iterative computation on peer-to-peer networks. Computing 94(8–10), 763–782 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ozdemir, S., Xiao, Y.: Secure data aggregation in wireless sensor networks: a comprehensive overview. Comput. Netw. 53(12), 2022–2037 (2009)

    Article  MATH  Google Scholar 

  16. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey. IEEE Commun. Surv. Tutorials 8(4), 48–63 (2006)

    Article  Google Scholar 

  17. Sun, J., Zhang, R., Zhang, Y.: PriStream: privacy-preserving distributed stream monitoring of thresholded PERCENTILE statistics. In: IEEE INFOCOM, pp. 1–9 (2016)

    Google Scholar 

  18. Shi, J., Zhang, R., Liu, Y., Zhang, Y.: Prisense: privacy-preserving data aggregation in people-centric urban sensing systems. In: IEEE INFOCOM, pp. 1–9. (2010)

    Google Scholar 

  19. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new aggregation techniques for sensor networks. In: SenSys, pp. 239–249 (2004)

    Google Scholar 

  20. Westhoff, D., Girao, J., Acharya, M.: Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation. IEEE Trans. Mob. Comput. 5(10), 1417–1431 (2006)

    Article  Google Scholar 

  21. Xue, M., Papadimitriou, P., Raïssi, C., Kalnis, P., Pung, H.K.: Distributed privacy preserving data collection. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 93–107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20149-3_9

    Chapter  Google Scholar 

  22. Zhang, K., Han, Q., Cai, Z., Yin, G.: Rippas: a ring-based privacy-preserving aggregation scheme in wireless sensor networks. Sensors 17(2), 300 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and helpful advice. This work was supported in part by the US National Science Foundation under grants CNS-1651954 (CAREER), CNS-1933047, and CNS-1718078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aseeri, A., Zhang, R. (2022). Locally Differentially Private Quantile Summary Aggregation in Wireless Sensor Networks. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13757. Springer, Cham. https://doi.org/10.1007/978-3-031-21743-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21743-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21742-5

  • Online ISBN: 978-3-031-21743-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics