Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incorporating AI Methods in Micro-dynamic Analysis to Support Group-Specific Policy-Making

  • Conference paper
  • First Online:
PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13753))

Abstract

An agent-based modelling approach is a powerful means of understanding social phenomena by modelling individual behaviours and interactions. However, the advancements in modelling pose challenges in the model analysis process for understanding the complex effects of input factors, especially when it comes to offering concrete policies for improving system outcomes. In this work, we propose a revised micro-dynamic analysis method that adopts advanced artificial intelligence methods to enhance the model interpretation and to facilitate group-specific policy-making. It strengthens the explanation power of the conventional micro-dynamic analysis by eliminating ambiguity in the result interpretation and enabling a causal interpretation of a target phenomenon across subgroups. We applied our method to understand an agent-based model that evaluates the effects of a long-term care scheme on access to care. Our findings showed that the method can suggest policies for improving the equity of access more efficiently than the conventional scenario analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, R.M.: Revisiting the behavioral model and access to medical care: Does it matter? J. Health Soc. Behav. 36(1), 1–10 (1995). http://www.jstor.org/stable/2137284

  2. Atun, R.: Health systems, systems thinking and innovation. Health Policy Plan. 27(SUPPL. 4), 4–8 (2012)

    Google Scholar 

  3. Auchincloss, A.H., Garcia, L.M.: Brief introductory guide to agent-based modeling and an illustration from urban health research. Cad. Saude Publica 31(1), 65–78 (2015). https://doi.org/10.1590/0102-311X00051615

    Article  Google Scholar 

  4. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. 99(suppl 3), 7280–7287 (2002). https://doi.org/10.1073/pnas.082080899

    Article  Google Scholar 

  5. Braithwaite, J.: Growing inequality: bridging complex systems, population health and health disparities. Int. J. Epidemiol. 351–353 (2018). https://doi.org/10.1093/ije/dyy001, http://academic.oup.com/ije/advance-article/doi/10.1093/ije/dyy001/4819238

  6. Chang, S., Yang, W., Deguchi, H.: Care providers, access to care, and the long-term care nursing insurance in china: An agent-based simulation. Soc. Sci. Medicine 244, 112667 (2020). https://doi.org/10.1016/j.socscimed.2019.112667

    Article  Google Scholar 

  7. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 43–52. Association for Computing Machinery, New York (1999). https://doi.org/10.1145/312129.312191

  8. Edali, M., Yücel, G.: Exploring the behavior space of agent-based simulation models using random forest metamodels and sequential sampling. Simulation Model. Practice Theory 92, 62–81 (2019). https://doi.org/10.1016/j.simpat.2018.12.006, https://www.sciencedirect.com/science/article/pii/S1569190X18301941

  9. Feng, Z., Liu, C., Guan, X., Mor, V.: China’s rapidly aging population creates policy challenges in shaping a viable long-term care system. Health Affairs 31, 2764–73 (2012). https://doi.org/10.1377/hlthaff.2012.0535

  10. Gilbert, G.N.: Agent-based models. Quantitative applications in the social sciences. Sage (2008)

    Google Scholar 

  11. Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based on graphical models. Front. Genet. 10, 524 (2019). https://doi.org/10.3389/fgene.2019.00524

  12. Hamill, L.: Agent-based modelling: The next 15 years. J. Artif. Societies Soc. Simul. 13(4), 7 (2010). https://doi.org/10.18564/jasss.1640, https://www.jasss.org/13/4/7.html

  13. Iwashita, H., Takagi, T., Suzuki, H., Goto, K., Ohori, K., Arimura, H.: Efficient constrained pattern mining using dynamic item ordering for explainable classification. CoRR abs/ arXiv: 2004.08015 (2020)

  14. Kotoku, J., et al.: Causal relations of health indices inferred statistically using the DirectLiNGAM algorithm from big data of Osaka prefecture health checkups. PLoS ONE 15(12), e0243229 (2020). https://doi.org/10.1371/journal.pone.0243229

    Article  Google Scholar 

  15. Langellier, B.A.: An agent-based simulation of persistent inequalities in health behavior: Understanding the interdependent roles of segregation, clustering, and social influence. SSM - Popul. Health 2, 757–769 (2016). https://doi.org/10.1016/j.ssmph.2016.10.006, https://www.sciencedirect.com/science/article/pii/S2352827316301112

  16. Lee, J.S., et al.: The complexities of agent-based modeling output analysis. J. Artifi. Societies Soc. Simul. 18(4), 4 (2015). https://doi.org/10.18564/jasss.2897, http://jasss.soc.surrey.ac.uk/18/4/4.html

  17. Malleson, N., Heppenstall, A., See, L., Evans, A.: Using an agent-based crime simulation to predict the effects of urban regeneration on individual household burglary risk. Environ. Planning B: Planning and Design 40(3), 405–426 (2013). https://doi.org/10.1068/b38057

  18. Ogarrio, J.M., Spirtes, P., Ramsey, J.: A hybrid causal search algorithm for latent variable models. In: Antonucci, A., Corani, G., Campos, C.P. (eds.) Proceedings of the Eighth International Conference on Probabilistic Graphical Models. Proceedings of Machine Learning Research, vol. 52, pp. 368–379. PMLR, Lugano, Switzerland (2016)

    Google Scholar 

  19. Ohori, K., Takahashi, S.: Market design for standardization problems with agent-based social simulation. J. Evol. Econ. 22(1), 49–77 (2012). https://doi.org/10.1007/s00191-010-0196-y

    Article  Google Scholar 

  20. Pereda, M., Santos, J.I., Galán, J.M.: A brief introduction to the use of machine learning techniques in the analysis of agent-based models. In: Hernández, C. (ed.) Advances in Management Engineering. LNMIE, pp. 179–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55889-9_11

    Chapter  Google Scholar 

  21. Qingdao Municipal Bureau of Human Resource and Social Secure: A list of LTC service providers of qingdao six districts (2016). http://www.qdhrss.gov.cn/pages/hdjl/fwdh/59947.html/

  22. Ramsey, J., Glymour, M., sanchez romero, R., Glymour, C.: A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images. Int. J. Data Sci. Anal. 3, 121–129 (2017). https://doi.org/10.1007/s41060-016-0032-z

  23. Shen, X., Ma, S., Vemuri, P., Simon, G.: Alzheimer’s Disease Neuroimaging Initiative: Challenges and opportunities with causal discovery algorithms: Application to alzheimer’s pathophysiology. Sci. Rep. 10(1), 2975 (2020). https://doi.org/10.1038/s41598-020-59669-x

    Article  Google Scholar 

  24. Shimizu, S., et al.: Directlingam: A direct method for learning a linear non-gaussian structural equation model. J. Mach. Learn. Res. 12(null), 1225–1248 (2011)

    Google Scholar 

  25. Spirtes, P., Glymour, C., Scheines, R. (eds.): Causation, Prediction, and Search. LNS, vol. 81. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-2748-9

  26. Spirtes, P., Glymour, C., Scheines, R., Kauffman, S., Aimale, V., Wimberly, F.: Constructing bayesian network models of gene expression networks from microarray data. In: Proceedings of the Atlantic Symposium on Computational Biology (2000). https://doi.org/10.1184/R1/6491291.v1

  27. Yamada, H., Yamane, S., Ohori, K., Kato, T., Takahashi, S.: A method for micro-dynamics analysis based on causal structure of agent-based simulation. In: Bae, K.H., Feng, B., Kim, S., Lazarova-Molnar, S., Zheng, Z., Roeder, T., Thiesing, R. (eds.) 2020 Winter Simulation Conference (WSC), pp. 313–324. IEEE Press, Piscataway, New Jersey (2020)

    Google Scholar 

  28. Yamane, S., et al.: Systematic analysis of micro dynamics in agent based simulation. In: Rabe, M., Juan, A., Mustafee, N., Skoogh, A., Jain, S., Johansson, B. (eds.) 2018 Winter Simulation Conference (WSC), pp. 4214–4215. IEEE Press, Piscataway, New Jersey (2018)

    Google Scholar 

  29. Yang, C., Kurahashi, S., Kurahashi, K., Ono, I., Terano, T.: Agent-based simulation on women’s role in a family line on civil service examination in chinese history. J. Artif. Societies Soc. Simul. 12(2), 5 (2009). https://www.jasss.org/12/2/5.html

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Number 20K18958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, S., Asai, T., Koyanagi, Y., Uemura, K., Maruhashi, K., Ohori, K. (2023). Incorporating AI Methods in Micro-dynamic Analysis to Support Group-Specific Policy-Making. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics