Abstract
Suction cup grasping is very common in industry, but moving too quickly can cause suction cups to detach, causing drops or damage. Maintaining a suction grasp throughout a high-speed motion requires balancing suction forces against inertial forces while the suction cups deform under strain. In this paper, we consider Grasp Optimized Motion Planning for Suction Transport (GOMP-ST), an algorithm that combines deep learning with optimization to decrease transport time while avoiding suction cup failure. GOMP-ST first repeatedly moves a physical robot, vacuum gripper, and a sample object, while measuring pressure with a solid-state sensor to learn critical failure conditions. Then, these are integrated as constraints on the accelerations at the end-effector into a time-optimizing motion planner. The resulting plans incorporate real-world effects such as suction cup deformation that are difficult to model analytically. In GOMP-ST, the learned constraint, modeled with a neural network, is linearized using Autograd and integrated into a sequential quadratic program optimization. In 420 experiments with a physical UR5 transporting objects ranging from 1.3 to 1.7 kg, we compare GOMP-ST to baseline optimizing motion planners. Results suggest that GOMP-ST can avoid suction cup failure while decreasing transport times from 16 to 58%. For code, video, and datasets, see https://sites.google.com/view/gomp-st
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acharya, P., Nguyen, K.D., La, H.M., Liu, D., Chen, I.M.: Nonprehensile manipulation: a trajectory-planning perspective. IEEE/ASME Trans. Mechatron. 26(1), 527–538 (2020)
Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world problems. In: International Conference on Principles and Practice of Constraint Programming, pp. 115–129. Springer (2011)
Bernheisel, J.D., Lynch, K.M.: Stable transport of assemblies: pushing stacked parts. IEEE Trans. Autom. Sci. Eng. 1(2), 163–168 (2004)
Berscheid, L., Kroger, T.: Jerk-limited real-time trajectory generation with arbitrary target states (2021). arXiv:2105.04830
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., et al.: JAX: Autograd and XLA. Astrophysics Source Code Library, pp. ascl–2111 (2021)
De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Fajemisin, A., Maragno, D., Hertog, D.D.: Optimization with Constraint Learning: A Ramework and Survey (2021). arXiv:2110.02121
Ha, H., Song, S.: FlingBot: the unreasonable effectiveness of dynamic manipulation for cloth unfolding. In: Conference on Robotic Learning (CoRL) (2021)
Hauser, K.: Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)
Huh, T.M., Sanders, K., Danielczuk, M., Li, M., Goldberg, K., Stuart, H.S.: A multi-chamber smart suction cup for adaptive gripping and haptic exploration (2021). arXiv:2105.02345
Ichnowski, J., Avigal, Y., Liu, Y., Goldberg, K.: GOMP-FIT: Grasp-optimized motion planning for fast inertial transport. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE (2022). (to appear)
Ichnowski, J., Avigal, Y., Satish, V., Goldberg, K.: Deep learning can accelerate grasp-optimized motion planning. Sci. Robot. 5(48) (2020)
Ichnowski, J., Danielczuk, M., Xu, J., Satish, V., Goldberg, K.: GOMP: Grasp-optimized motion planning for bin picking. In: 2020 International Conference on Robotics and Automation (ICRA). IEEE (2020)
Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: Stochastic trajectory optimization for motion planning. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4569–4574. IEEE (2011)
Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)
Kolluru, R., Valavanis, K., Hebert, T.: Modeling, analysis, and performance evaluation of a robotic gripper system for limp material handling. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 28(3), 480–486 (1998)
Kudla, P., Pawlak, T.P.: One-class synthesis of constraints for mixed-integer linear programming with c4. 5 decision trees. Appl. Soft Comput. 68, 1–12 (2018)
Kuntz, A., Bowen, C., Alterovitz, R.: Fast anytime motion planning in point clouds by interleaving sampling and interior point optimization. Robot. Res. 929–945 (2020)
LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, B.R., Others (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. AK Peters, Natick, MA (2001)
Lim, V., Huang, H., Chen, L.Y., Wang, J., Ichnowski, J., Seita, D., Laskey, M., Goldberg, K.: Planar robot casting with Real2Sim2Real self-supervised learning (2021). arXiv:2111.04814
Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)
Luh, J.Y., Walker, M.W., Paul, R.P.: On-line computational scheme for mechanical manipulators (1980)
Luo, J., Hauser, K.: Robust trajectory optimization under frictional contact with iterative learning. Auton. Robot. 41(6), 1447–1461 (2017)
Lynch, K.M., Mason, M.T.: Dynamic underactuated nonprehensile manipulation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96, vol. 2, pp. 889–896. IEEE (1996)
Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: controllability, planning, and experiments. Int. J. Robot. Res. 18(1), 64–92 (1999)
Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-Net 3.0: Computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5620–5627. IEEE (2018)
Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S.I., Hertog, D.D., Fajemisin, A.: Mixed-integer optimization with constraint learning (2021). arXiv:2111.04469
Mucchiani, C., Yim, M.: Dynamic grasping for object picking using passive zero-dof end-effectors. IEEE Robot. Autom. Lett. 6(2), 3089–3096 (2021)
Park, C., Pan, J., Manocha, D.: ITOMP: Incremental trajectory optimization for real-time replanning in dynamic environments. In: Twenty-Second International Conference on Automated Planning and Scheduling (2012)
Pham, H., Pham, Q.C.: Critically fast pick-and-place with suction cups. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3045–3051. IEEE (2019)
Pham, Q.C., Caron, S., Nakamura, Y.: Kinodynamic planning in the configuration space via admissible velocity propagation. In: Robotics: Science and Systems, vol. 32 (2013)
Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: 2009 IEEE International Conference on Robotics and Automation, pp. 489–494. IEEE (2009)
Ruggiero, F., Lippiello, V., Siciliano, B.: Nonprehensile dynamic manipulation: a survey. IEEE Robot. Autom. Lett. 3(3), 1711–1718 (2018)
Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems, pp. 1–10 (2013)
Srinivasa, S.S., Erdmann, M.A., Mason, M.T.: Using projected dynamics to plan dynamic contact manipulation. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3618–3623. IEEE (2005)
Stuart, H.S., Bagheri, M., Wang, S., Barnard, H., Sheng, A.L., Jenkins, M., Cutkosky, M.R.: Suction helps in a pinch: improving underwater manipulation with gentle suction flow. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2279–2284 (2015)
Toussaint, M.: Newton methods for k-order markov constrained motion problems (2014). arXiv:1407.0414
Valencia, A.J., Idrovo, R.M., Sappa, A.D., Guingla, D.P., Ochoa, D.: A 3d vision based approach for optimal grasp of vacuum grippers. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), pp. 1–6 (2017)
Wang, C., Wang, S., Romero, B., Veiga, F., Adelson, E.: SwingBot: learning physical features from in-hand tactile exploration for dynamic swing-up manipulation. In: Proceeding IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)
Zeng, A., Song, S., Lee, J., Rodriguez, A., Funkhouser, T.: TossingBot: learning to throw arbitrary objects with residual physics. IEEE Trans. Robot. 36(4), 1307–1319 (2020)
Zhang, H., Ichnowski, J., Seita, D., Wang, J., Goldberg, K.: Robots of the lost arc: Learning to dynamically manipulate fixed-endpoint ropes and cables. In: Proceeding IEEE International Conference Robotics and Automation (ICRA) (2021)
Acknowledgments
This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. We thank our colleagues for their helpful feedback and suggestions. We thank Tae Myung Huh and Michael Danielczuk for their invaluable advice. We thank Adam Lau for his professional photography. We thank Adam Rashid for his help running the physical robot. This article solely reflects the opinions and conclusions of its authors and do not reflect the views of the sponsors or their associated entities.
Author information
Authors and Affiliations
Contributions
Yahav Avigal and Jeffrey Ichnowski–Equal contribution
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Avigal, Y., Ichnowski, J., Cao, M.Y., Goldberg, K. (2023). GOMP-ST: Grasp Optimized Motion Planning for Suction Transport. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-21090-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21089-1
Online ISBN: 978-3-031-21090-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)