Nothing Special   »   [go: up one dir, main page]

Skip to main content

GOMP-ST: Grasp Optimized Motion Planning for Suction Transport

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XV (WAFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 25))

Included in the following conference series:

Abstract

Suction cup grasping is very common in industry, but moving too quickly can cause suction cups to detach, causing drops or damage. Maintaining a suction grasp throughout a high-speed motion requires balancing suction forces against inertial forces while the suction cups deform under strain. In this paper, we consider Grasp Optimized Motion Planning for Suction Transport (GOMP-ST), an algorithm that combines deep learning with optimization to decrease transport time while avoiding suction cup failure. GOMP-ST first repeatedly moves a physical robot, vacuum gripper, and a sample object, while measuring pressure with a solid-state sensor to learn critical failure conditions. Then, these are integrated as constraints on the accelerations at the end-effector into a time-optimizing motion planner. The resulting plans incorporate real-world effects such as suction cup deformation that are difficult to model analytically. In GOMP-ST, the learned constraint, modeled with a neural network, is linearized using Autograd and integrated into a sequential quadratic program optimization. In 420 experiments with a physical UR5 transporting objects ranging from 1.3 to 1.7 kg, we compare GOMP-ST to baseline optimizing motion planners. Results suggest that GOMP-ST can avoid suction cup failure while decreasing transport times from 16 to 58%. For code, video, and datasets, see https://sites.google.com/view/gomp-st

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, P., Nguyen, K.D., La, H.M., Liu, D., Chen, I.M.: Nonprehensile manipulation: a trajectory-planning perspective. IEEE/ASME Trans. Mechatron. 26(1), 527–538 (2020)

    Google Scholar 

  2. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world problems. In: International Conference on Principles and Practice of Constraint Programming, pp. 115–129. Springer (2011)

    Google Scholar 

  3. Bernheisel, J.D., Lynch, K.M.: Stable transport of assemblies: pushing stacked parts. IEEE Trans. Autom. Sci. Eng. 1(2), 163–168 (2004)

    Article  Google Scholar 

  4. Berscheid, L., Kroger, T.: Jerk-limited real-time trajectory generation with arbitrary target states (2021). arXiv:2105.04830

  5. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., et al.: JAX: Autograd and XLA. Astrophysics Source Code Library, pp. ascl–2111 (2021)

    Google Scholar 

  6. De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  7. Fajemisin, A., Maragno, D., Hertog, D.D.: Optimization with Constraint Learning: A Ramework and Survey (2021). arXiv:2110.02121

  8. Ha, H., Song, S.: FlingBot: the unreasonable effectiveness of dynamic manipulation for cloth unfolding. In: Conference on Robotic Learning (CoRL) (2021)

    Google Scholar 

  9. Hauser, K.: Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)

    Article  Google Scholar 

  10. Huh, T.M., Sanders, K., Danielczuk, M., Li, M., Goldberg, K., Stuart, H.S.: A multi-chamber smart suction cup for adaptive gripping and haptic exploration (2021). arXiv:2105.02345

  11. Ichnowski, J., Avigal, Y., Liu, Y., Goldberg, K.: GOMP-FIT: Grasp-optimized motion planning for fast inertial transport. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE (2022). (to appear)

    Google Scholar 

  12. Ichnowski, J., Avigal, Y., Satish, V., Goldberg, K.: Deep learning can accelerate grasp-optimized motion planning. Sci. Robot. 5(48) (2020)

    Google Scholar 

  13. Ichnowski, J., Danielczuk, M., Xu, J., Satish, V., Goldberg, K.: GOMP: Grasp-optimized motion planning for bin picking. In: 2020 International Conference on Robotics and Automation (ICRA). IEEE (2020)

    Google Scholar 

  14. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: Stochastic trajectory optimization for motion planning. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4569–4574. IEEE (2011)

    Google Scholar 

  15. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  16. Kolluru, R., Valavanis, K., Hebert, T.: Modeling, analysis, and performance evaluation of a robotic gripper system for limp material handling. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 28(3), 480–486 (1998)

    Google Scholar 

  17. Kudla, P., Pawlak, T.P.: One-class synthesis of constraints for mixed-integer linear programming with c4. 5 decision trees. Appl. Soft Comput. 68, 1–12 (2018)

    Google Scholar 

  18. Kuntz, A., Bowen, C., Alterovitz, R.: Fast anytime motion planning in point clouds by interleaving sampling and interior point optimization. Robot. Res. 929–945 (2020)

    Google Scholar 

  19. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, B.R., Others (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. AK Peters, Natick, MA (2001)

    Google Scholar 

  20. Lim, V., Huang, H., Chen, L.Y., Wang, J., Ichnowski, J., Seita, D., Laskey, M., Goldberg, K.: Planar robot casting with Real2Sim2Real self-supervised learning (2021). arXiv:2111.04814

  21. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luh, J.Y., Walker, M.W., Paul, R.P.: On-line computational scheme for mechanical manipulators (1980)

    Google Scholar 

  23. Luo, J., Hauser, K.: Robust trajectory optimization under frictional contact with iterative learning. Auton. Robot. 41(6), 1447–1461 (2017)

    Article  Google Scholar 

  24. Lynch, K.M., Mason, M.T.: Dynamic underactuated nonprehensile manipulation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96, vol. 2, pp. 889–896. IEEE (1996)

    Google Scholar 

  25. Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: controllability, planning, and experiments. Int. J. Robot. Res. 18(1), 64–92 (1999)

    Article  Google Scholar 

  26. Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-Net 3.0: Computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5620–5627. IEEE (2018)

    Google Scholar 

  27. Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S.I., Hertog, D.D., Fajemisin, A.: Mixed-integer optimization with constraint learning (2021). arXiv:2111.04469

  28. Mucchiani, C., Yim, M.: Dynamic grasping for object picking using passive zero-dof end-effectors. IEEE Robot. Autom. Lett. 6(2), 3089–3096 (2021)

    Article  Google Scholar 

  29. Park, C., Pan, J., Manocha, D.: ITOMP: Incremental trajectory optimization for real-time replanning in dynamic environments. In: Twenty-Second International Conference on Automated Planning and Scheduling (2012)

    Google Scholar 

  30. Pham, H., Pham, Q.C.: Critically fast pick-and-place with suction cups. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3045–3051. IEEE (2019)

    Google Scholar 

  31. Pham, Q.C., Caron, S., Nakamura, Y.: Kinodynamic planning in the configuration space via admissible velocity propagation. In: Robotics: Science and Systems, vol. 32 (2013)

    Google Scholar 

  32. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: 2009 IEEE International Conference on Robotics and Automation, pp. 489–494. IEEE (2009)

    Google Scholar 

  33. Ruggiero, F., Lippiello, V., Siciliano, B.: Nonprehensile dynamic manipulation: a survey. IEEE Robot. Autom. Lett. 3(3), 1711–1718 (2018)

    Article  Google Scholar 

  34. Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems, pp. 1–10 (2013)

    Google Scholar 

  35. Srinivasa, S.S., Erdmann, M.A., Mason, M.T.: Using projected dynamics to plan dynamic contact manipulation. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3618–3623. IEEE (2005)

    Google Scholar 

  36. Stuart, H.S., Bagheri, M., Wang, S., Barnard, H., Sheng, A.L., Jenkins, M., Cutkosky, M.R.: Suction helps in a pinch: improving underwater manipulation with gentle suction flow. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2279–2284 (2015)

    Google Scholar 

  37. Toussaint, M.: Newton methods for k-order markov constrained motion problems (2014). arXiv:1407.0414

  38. Valencia, A.J., Idrovo, R.M., Sappa, A.D., Guingla, D.P., Ochoa, D.: A 3d vision based approach for optimal grasp of vacuum grippers. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), pp. 1–6 (2017)

    Google Scholar 

  39. Wang, C., Wang, S., Romero, B., Veiga, F., Adelson, E.: SwingBot: learning physical features from in-hand tactile exploration for dynamic swing-up manipulation. In: Proceeding IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)

    Google Scholar 

  40. Zeng, A., Song, S., Lee, J., Rodriguez, A., Funkhouser, T.: TossingBot: learning to throw arbitrary objects with residual physics. IEEE Trans. Robot. 36(4), 1307–1319 (2020)

    Article  Google Scholar 

  41. Zhang, H., Ichnowski, J., Seita, D., Wang, J., Goldberg, K.: Robots of the lost arc: Learning to dynamically manipulate fixed-endpoint ropes and cables. In: Proceeding IEEE International Conference Robotics and Automation (ICRA) (2021)

    Google Scholar 

Download references

Acknowledgments

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. We thank our colleagues for their helpful feedback and suggestions. We thank Tae Myung Huh and Michael Danielczuk for their invaluable advice. We thank Adam Lau for his professional photography. We thank Adam Rashid for his help running the physical robot. This article solely reflects the opinions and conclusions of its authors and do not reflect the views of the sponsors or their associated entities.

Author information

Authors and Affiliations

Authors

Contributions

Yahav Avigal and Jeffrey Ichnowski–Equal contribution

Corresponding author

Correspondence to Yahav Avigal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avigal, Y., Ichnowski, J., Cao, M.Y., Goldberg, K. (2023). GOMP-ST: Grasp Optimized Motion Planning for Suction Transport. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_29

Download citation

Publish with us

Policies and ethics