Abstract
Proving motion planning infeasibility is an important part of a complete motion planner. Common approaches for high-dimensional motion planning are only probabilistically complete. Previously, we presented an algorithm to construct infeasibility proofs by applying machine learning to sampled configurations from a bidirectional sampling-based planner. In this work, we prove that the learned manifold converges to an infeasibility proof exponentially. Combining prior approaches for sampling-based planning and our converging infeasibility proofs, we propose the term asymptotic completeness to describe the property of returning a plan or infeasibility proof in the limit. We compare the empirical convergence of different sampling strategies to validate our analysis.
This work is supported in part by the National Science Foundation under Grant No. IIS-1849348.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipulation planning. In: ICRA. vol. 1, pp. 113–120. IEEE (1996)
Basch, J., Guibas, L.J., Hsu, D., Nguyen, A.T.: Disconnection proofs for motion planning. In: ICRA. vol. 2, pp. 1765–1772. IEEE (2001)
Ben-Shahar, O., Rivlin, E.: Practical pushing planning for rearrangement tasks. T-RO 14(4), 549–565 (1998)
Berenson, D., Srinivasa, S.S., Ferguson, D., Kuffner, J.J.: Manipulation planning on constraint manifolds. In: ICRA
Boissonnat, J.D., Chazal, F., Yvinec, M.: Geometric and Topological Inference. Cambridge Texts in Applied Mathematics. Cambridge University Press (2018). https://hal.inria.fr/hal-01615863
Boissonnat, J.D., Ghosh, A.: Manifold reconstruction using tangential Delaunay complexes. Discret. Comput. Geom. 51(1), 221–267 (2014)
Boor, V., Overmars, M.H., Van Der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: RSS. vol. 2, pp. 1018–1023. IEEE (1999)
Branicky, M.S., LaValle, S.M., Olson, K., Yang, L.: Quasi-randomized path planning. In: ICRA, vol. 2, pp. 1481–1487. IEEE (2001)
Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and task planning. IJRR 28(1), 104–126 (2009)
Canny, J.: Computing roadmaps of general semi-algebraic sets. Comput. J. 36(5), 504–514 (1993)
Chazelle, B.: Approximation and decomposition of shapes. Algorithm. Geom. Aspects of Robot. 1, 145–185 (1985)
Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. RAM 19(4), 72–82 (2012)
Şucan, I.A., Kavraki, L.E.: A sampling-based tree planner for systems with complex dynamics. T-RO 28(1), 116–131 (2012). http://dx.doi.org/10.1109/tro.2011.2160466
Dantam, N.T.: Task and Motion Planning. Springer, Berlin, Heidelberg (2020)
Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: An incremental constraint-based framework for task and motion planning. IJRR 37(10), 1134–1151 (2018)
Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-optimal motion planning. IJRR 33(1), 18–47 (2014)
Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. JACM 40(5), 1048–1066 (1993)
Garrett, C.R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning. Ann. Rev. control, Robot. Autonom. Syst. 4, 265–293 (2021)
Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. IJRR 21(3), 233–255 (2002)
Janson, L., Ichter, B., Pavone, M.: Deterministic sampling-based motion planning: optimality, complexity, and performance. IJRR 37(1), 46–61 (2018)
Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. IJRR 34(7), 883–921 (2015)
Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: ICRA, pp. 4569–4574. IEEE (2011)
Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. IJRR 30(7), 846–894 (2011)
Kavraki, L.E., Kolountzakis, M.N., Latombe, J.C.: Analysis of probabilistic roadmaps for path planning. T-RO 14(1), 166–171 (1998)
Kavraki, L.E., Latombe, J.C., Motwani, R., Raghavan, P.: Randomized query processing in robot path planning. JCSS 57(1), 50–60 (1998)
Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. T-RO 12(4), 566–580 (1996)
Kingston, Z., Moll, M., Kavraki, L.E.: Exploring implicit spaces for constrained sampling-based planning. IJRR 38(10–11), 1151–1178 (2019)
Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: ICRA, vol. 2, pp. 995–1001. IEEE (2000)
Ladd, A.M., Kavraki, L.E.: Fast tree-based exploration of state space for robots with dynamics. In: Algorithmic Foundations of Robotics VI, pp. 297–312. Springer (2004)
Lafferriere, G., Sussmann, H.: Motion planning for controllable systems without drift. In: ICRA, pp. 1148–1149. IEEE Computer Society (1991)
LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical Report TR-98-11, Computer Science Department, Iowa State University (1998)
LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. IJRR 20(5), 378–400 (2001)
Li, S., Dantam, N.T.: Learning proofs of motion planning infeasibility. In: RSS (2021)
Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinodynamic planning. IJRR 35(5), 528–564 (2016)
Makino, H.: Assembly robot (1982), US Patent 4,341,502
McCarthy, Z., Bretl, T., Hutchinson, S.: Proving path non-existence using sampling and alpha shapes. In: ICRA, pp. 2563–2569. IEEE (2012)
Mukadam, M., Dong, J., Yan, X., Dellaert, F., Boots, B.: Continuous-time Gaussian process motion planning via probabilistic inference. IJRR 37(11), 1319–1340 (2018)
Murray, S., Floyd-Jones, W., Qi, Y., Sorin, D.J., Konidaris, G.D.: Robot motion planning on a chip. In: RSS (2016)
Orthey, A., Toussaint, M.: Sparse multilevel roadmaps for high-dimensional robotic motion planning. In: ICRA, pp. 7851–7857 (2021)
Ota, J.: Rearrangement of multiple movable objects-integration of global and local planning methodology. In: ICRA, vol. 2, pp. 1962–1967. IEEE (2004)
Otte, M., Frazzoli, E.: RRTX: asymptotically optimal single-query sampling-based motion planning with quick replanning. IJRR 35(7), 797–822 (2016)
Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling-based roadmap of trees for parallel motion planning. T-RO 21(4), 597–608 (2005)
Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and convex collision checking. IJRR 33(9), 1251–1270 (2014)
Siméon, T., Laumond, J.P., Nissoux, C.: Visibility-based probabilistic roadmaps for motion planning. Adv. Robot. 14(6), 477–493 (2000)
Varava, A., Carvalho, J.F., Pokorny, F.T., Kragic, D.: Caging and path non-existence: a deterministic sampling-based verification algorithm. In: Robotics Research, pp. 589–604. Springer (2020)
Zhang, L., Kim, Y.J., Manocha, D.: A hybrid approach for complete motion planning. In: IROS, pp. 7–14. IEEE/RSJ (2007)
Zhang, L., Kim, Y.J., Manocha, D.: A simple path non-existence algorithm using c-obstacle query. In: Algorithmic Foundation of Robotics VII, pp. 269–284. Springer (2008)
Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: covariant Hamiltonian optimization for motion planning. IJRR 32(9–10), 1164–1193 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix: Comparing PRM and RRT-Connect
A Appendix: Comparing PRM and RRT-Connect
Below is an example comparing PRM and RRT-connect in a 2D configuration space with disconnected \(\mathcal {C}_{\textrm{rest}}\) regions. PRM’s samples form two classes, the samples connectable to the goal configuration, and the samples not connectable to the goal configuration. RRT-connect’s samples also form two classes, the start tree samples and the goal tree samples. The example configuration space’s \(\mathcal {C}_{\textrm{rest}}\) in Fig. 6 has two disconnected components, the region outside of obstacle region 1, and the region in between obstacle region 1 and 2. PRM samples all \(\mathcal {C}_{\textrm{free}}\), so with disconnected \(\mathcal {C}_{\textrm{rest}}\), the trained manifold is in \(\mathcal {C}_{\textrm{obs}}\) (Fig. 6a). RRT-connect samples are connected to either the start configuration or the goal configuration, which is nor guaranteed to cover the entire \(\mathcal {C}_{\textrm{free}}\) if there are disconnected regions, thus the learned manifold may not converge into \(\mathcal {C}_{\textrm{obs}}\) (Fig. 6b). In our proof, if \(\mathcal {C}_{\textrm{rest}}\) has disconnected regions, then we need to use PRM planner. If \(\mathcal {C}_{\textrm{rest}}\) is connected, then PRM and RRT-connect are the same.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, S., Dantam, N.T. (2023). Exponential Convergence of Infeasibility Proofs for Kinematic Motion Planning. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-21090-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21089-1
Online ISBN: 978-3-031-21090-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)