Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Approach to 3D Object Detection in Real-Time for Cognitive Robotics Experiments

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Abstract

This paper presents a computer vision method that, taking information from an RGB-D camera, performs real time 3D object recognition to be used in cognitive robotics experiments, where the real time constraints are key. To this end, we have implemented and tested an algorithm that combines a deep neural network (YOLOv3 tiny) that processes RGB images and provides object recognition and 2D localization, with a point cloud analysis method to compute the third dimension. The proposed approach has been tested in real-time manipulation experiments with the UR5e robotic arm through ROS, and using a GPU to execute the method, showing that this combination allows for an efficient real-time learning using cognitive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asada, M., et al.: Cognitive developmental robotics: a survey. IEEE Trans. Auton. Ment. Dev. 1(1), 12–34 (2009)

    Article  Google Scholar 

  2. Weng, J.: Developmental robotics: theory and experiments. Int. J. Humanoid Rob. 1(02), 199–236 (2004)

    Article  Google Scholar 

  3. Doncieux, S., et al.: Open-ended learning: a conceptual framework based on representational redescription. Front. Neurorobot. 12, 59 (2018)

    Article  Google Scholar 

  4. Romero, A., Piater, J., Bellas, F., Duro, R.J.: ANN-based representation learning in a lifelong open-ended learning cognitive architecture. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN) 2022, pp. 1–8. IEEE (2022)

    Google Scholar 

  5. Thrun, S., Mitchell, T.M.: Lifelong robot learning. Robot. Auton. Syst. 15(1–2), 25–46 (1995)

    Article  Google Scholar 

  6. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  8. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Networks Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  9. Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A.: A survey on 3d object detection methods for autonomous driving applications. IEEE Trans. Intell. Transp. Syst. 20(10), 3782–3795 (2019)

    Article  Google Scholar 

  10. Dhillon, A., Verma, G.K.: Convolutional neural network: a review of models, methodologies and applications to object detection. Prog. Artif. Intell. 9(2), 85–112 (2019). https://doi.org/10.1007/s13748-019-00203-0

    Article  Google Scholar 

  11. Xiao, Y., et al.: A review of object detection based on deep learning. Multimedia Tools and Applications 79(33–34), 23729–23791 (2020). https://doi.org/10.1007/s11042-020-08976-6

    Article  Google Scholar 

  12. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2020)

    Article  Google Scholar 

  13. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  14. Linder, T., Pfeiffer, K.Y., Vaskevicius, N., Schirmer, R., Arras, K.O.: Accurate detection and 3D localization of humans using a novel YOLO-based RGB-D fusion approach and synthetic training data. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1000–1006. IEEE (2020)

    Google Scholar 

  15. Fernandes, D., et al.: Point-cloud based 3D object detection and classification methods for self-driving applications: a survey and taxonomy. Information Fusion 68, 161–191 (2021)

    Article  Google Scholar 

  16. Romero, A., Bellas, F., Becerra, J.A., Duro, R.J.: Motivation as a tool for designing lifelong learning robots. Integr. Comput.-Aided Eng. 27(4), 353–372 (2020)

    Article  Google Scholar 

  17. Becerra, J.A., Romero, A., Bellas, F., Duro, R.J.: Motivational engine and long-term memory coupling within a cognitive architecture for lifelong open-ended learning. Neurocomputing 452, 341–354 (2021)

    Article  Google Scholar 

  18. Redmon, J.: Darknet: Open-Source Neural Networks in C. http://pjreddie.com/darknet/. Accessed 06 June 2022

  19. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)

    Article  Google Scholar 

  20. YOLO algorithm. https://pjreddie.com/darknet/yolo/. Accessed 06 June 2022

  21. ROS Noetic wiki. https://wiki.ros.org/noetic. Accessed 06 June 2022

  22. Bjelonic, M.: Darknet_ros. http://wiki.ros.org/darknet_ros. Accessed 04 June 2022

  23. Martin Rico, F.: Darknet_ros_3d. https://github.com/IntelligentRoboticsLabs/gb_visual_detection_3d. Accessed 06 June 2022

  24. Ragel, R., Maza, I., Caballero, F., Ollero, A.: Comparison of motion planning techniques for a multi-rotor UAS equipped with a multi-joint manipulator arm. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp. 133–141 (2015)

    Google Scholar 

  25. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. Int. J. Robot. Res. 34(7), 883–921 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support received from the CITIC research center, funded by Xunta de Galicia and European Regional Development Fund by grant ED431G 2019/01, and to the Horizon Programme of the European Union through grant number 2019-1-ES01-KA201-065742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bellas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidal-Soroa, D., Furelos, P., Bellas, F., Becerra, J.A. (2023). An Approach to 3D Object Detection in Real-Time for Cognitive Robotics Experiments. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-031-21065-5_24

Download citation

Publish with us

Policies and ethics