Abstract
While endoscopy is routinely used for surveillance, high operator dependence demands robust automated image analysis methods. Automated segmentation of region-of-interest (ROI) that includes lesions, inflammations, and instruments can serve to cope with the operator dependence problem in this field. Most supervised methods are developed by fitting models on the available ground truth mask samples only. This work proposes a joint training approach using the UNet coupled with a variational auto-encoder (VAE) to improve endoscopic image segmentation by exploiting original samples, predicted masks and ground truth masks. In the proposed UNet-eVAE, VAE utilises the masks to constrain ROI-specific feature representations for reconstruction as an auxiliary task. The fine-grained spatial information from VAE is fused with the UNet decoder to enrich the feature representations and improve segmentation performance. Our experimental results on both colonoscopy and ureteroscopy datasets demonstrate that the proposed architecture can learn robust representations and generalise segmentation performance on unseen samples while improving the baseline.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aldoukhi, A.H., Roberts, W.W., Hall, T.L., Ghani, K.R.: Holmium laser lithotripsy in the new stone age: dust or bust? Front. Surg. 4, 57 (2017)
Alelign, T., Petros, B.: Kidney stone disease: an update on current concepts. Adv. Urol. 2018 (2018)
Ali, S., et al.: Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Med. Image Anal. 70, 102002 (2021)
Ali, S., et al.: PolypGen: a multi-center polyp detection and segmentation dataset for generalisability assessment. arXiv preprint arXiv:2106.04463 (2021)
Ali, S., et al.: An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Sci. Rep. 10(1), 1–15 (2020)
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)
Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26
Galdran, A., Carneiro, G., Ballester, M.A.G.: Double encoder-decoder networks for gastrointestinal polyp segmentation. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 293–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_22
Gupta, S., Ali, S., Goldsmith, L., Turney, B., Rittscher, J.: MI-UNet: improved segmentation in ureteroscopy. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 212–216 (2020). https://doi.org/10.1109/ISBI45749.2020.9098608
Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37
Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Li, K., Kong, L., Zhang, Y.: 3D U-Net brain tumor segmentation using VAE skip connection. In: 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), pp. 97–101. IEEE (2020)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tomar, N.K., et al.: DDANet: dual decoder attention network for automatic polyp segmentation. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12668, pp. 307–314. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68793-9_23
Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Focus U-Net: a novel dual attention-gated CNN for polyp segmentation during colonoscopy. Comput. Biol. Med. 137, 104815 (2021)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)
Zhu, Y., Min, M.R., Kadav, A., Graf, H.P.: S3VAE: self-supervised sequential VAE for representation disentanglement and data generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6538–6547 (2020)
Acknowledgement
We would like to thank Boston Scientific for funding this project (Grant No: DFR04690). SG and BT are funded by BSC, BB is funded by EndoMapper Horizon 2020 FET (GA 863146), SA and JR were supported by the NIHR Oxford Biomedical Research Centre.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Gupta, S., Ali, S., Xu, Z., Bhattarai, B., Turney, B., Rittscher, J. (2022). UNet-eVAE: Iterative Refinement Using VAE Embodied Learning for Endoscopic Image Segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-21014-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21013-6
Online ISBN: 978-3-031-21014-3
eBook Packages: Computer ScienceComputer Science (R0)