Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rotating Target Detection Based on Lightweight Network

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Abstract

Current rotating object detection task achieves good results based on large models. In order to reduce the size of model, we propose a lightweight network SFC (ShuffleNet combines FPN with CSL) for rotating target detection. SFC first introduces circular smooth label (CSL) to detect target rotations, which transforms the traditional angle regression problem into classification problem. Then, the lightweight ShuffleNetV2 is utilized as the backbone to reduce the number of parameters. ShuffleNetV2 is used for feature extraction, and CSL is introduced to address the periodic problem of angles. Comparative experiments were carried out on DOTA 1.5 dataset. The experimental results show that the proposed method reduces the parameter by nearly 90% with a slight loss of accuracy, and increases the inferencing speed by 40% at the same time.

Y. Jiao and Q. Zhu—Contributed equally to this work.

This work is partially supported by the National Natural Science Foundation of China (62101552) and by the Key R &D Program of the Chinese Academy of Sciences (ZDRW-XH-2021-3-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988 (2017)

    Google Scholar 

  3. Iandola, F.N., et al.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  4. Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  5. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  6. Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 677–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_40

    Chapter  Google Scholar 

  7. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)

    Google Scholar 

  8. Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q.: Rethinking rotated object detection with gaussian wasserstein distance loss. In: International Conference on Machine Learning (ICML), pp. 11830–11841. PMLR (2021)

    Google Scholar 

  9. Ding, J., Xue, N., Long, Y., Xia, G-.S., Lu, O.: Learning roi transformer for oriented object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2849–2858 (2019)

    Google Scholar 

  10. Zhang, G., Shijian, L., Zhang, W.: Cad-net: a context-aware detection network for objects in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 57(12), 10015–10024 (2019)

    Article  Google Scholar 

  11. Yang, X., Yan, J., Feng, Z., He, T.: R3det: refined single-stage detector with feature refinement for rotating object. In Proc. AAAI Conf. Artif. Intell. 35, 3163–3171 (2021)

    Google Scholar 

  12. Li, Z., Hou, B., Wu, Z., Jiao, L., Ren, B., Yang, C.: Fcosr: A simple anchor-free rotated detector for aerial object detection. arXiv preprint arXiv:2111.10780 (2021)

  13. Zhang, F., Wang, X., Zhou, S., Wang, Y.: DARDet: A dense anchor-free rotated object detector in aerial images. IEEE Geosci. Remote Sensing Lett. 19 1–5 (2021)

    Google Scholar 

  14. Ding, J., Xue, N., Long, Y., Xia, G.-S., Lu, Q.: Learning roi transformer for detecting oriented objects in aerial images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 31 (2018)

    Google Scholar 

  17. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-iou loss: faster and better learning for bounding box regression. In Proc. AAAI Conf. Artif. Intell. 34, 12993–13000 (2020)

    Google Scholar 

  18. Rezatofighi, h., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp .658–666 (2019)

    Google Scholar 

  19. Xia, G.-.S.: Dota: A large-scale dataset for object detection in aerial images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  20. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  21. Ming, Q., Miao, L., Zhou, Z., Yang, X., Dong, Y.: Optimization for Arbitrary-Oriented Object Detection via Representation Invariance Loss. In: IEEE Geoscience and Remote Sensing Letters, pp. 1–5 (2021)

    Google Scholar 

  22. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2458–2466 (2021)

    Google Scholar 

  23. Qian, W., Yang, X., Peng, S., Zhang, X., Yan, J.: RSDet++: Point-based modulated loss for more accurate rotated object detection. In: IEEE Transactions on Circuits and Systems for Video Technology (2022)

    Google Scholar 

  24. Yang, X., Hou, L., Zhou, Y., Wang, W., Yan, J.: Dense label encoding for boundary discontinuity free rotation detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15819–15829 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiao, Y., Zhu, Q., He, H., Zhao, T., Wang, H. (2022). Rotating Target Detection Based on Lightweight Network. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20868-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20867-6

  • Online ISBN: 978-3-031-20868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics