Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evidence-Based Document-Level Event Factuality Identification

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13630))

Included in the following conference series:

Abstract

The existing Document-Level Event Factuality Identification (DEFI) work relies on the syntactic and semantic features of event trigger and sentences. However, focusing only on the relevant features of event trigger may omit the important information for event factuality identification, while finding critical information from the whole document is still challenging. In this paper, our motivation is that DEFI can be inferred from a complete set of evidential sentences rather than the event trigger. Hence, we construct a new Evidence-Based Document-Level Event Factuality (EB-DLEF) corpus, and introduce a new evidential sentence selection task for DEFI. Moreover, we propose a pipeline approach to solve the two-step work of evidential sentence selection and event factuality identification, which outperforms various baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.chinadaily.com.cn/.

  2. 2.

    https://english.sina.com/.

  3. 3.

    https://news.sina.com.cn/.

  4. 4.

    https://stanfordnlp.github.io/stanza/.

  5. 5.

    https://github.com/huggingface/transformers.

References

  1. Saurí, R.: A Factuality Profiler for Eventualities in Text. Brandeis University (2008)

    Google Scholar 

  2. Qian, Z., Li, P., Zhu, Q., Zhou, G.: Document-level event factuality identification via adversarial neural network. In: NAACL-HLT (1), pp. 2799–2809. Association for Computational Linguistics (2019)

    Google Scholar 

  3. Klenner, M., Clematide, S.: How factuality determines sentiment inferences. In: *SEM@ACL. The *SEM 2016 Organizing Committee (2016)

    Google Scholar 

  4. Born, L., Mesgar, M., Strube, M.: Using a graph-based coherence model in document-level machine translation. In: DiscoMT@EMNLP, pp. 26–35. Association for Computational Linguistics (2017)

    Google Scholar 

  5. Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: EMNLP, pp. 1589–1599. ACL (2011)

    Google Scholar 

  6. Zhang, H., Qian, Z., Zhu, X., Li, P.: Document-level event factuality identification using negation and speculation scope. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 414–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_34

    Chapter  Google Scholar 

  7. Cao, P., Chen, Y., Yang, Y., Liu, K., Zhao, J.: Uncertain local-to-global networks for document-level event factuality identification. In: EMNLP (1), pp. 2636–2645. Association for Computational Linguistics (2021)

    Google Scholar 

  8. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and verification. In: NAACL-HLT, pp. 809–819. Association for Computational Linguistics (2018)

    Google Scholar 

  9. Qian, Z., Li, P., Zhang, Y., Zhou, G., Zhu, Q.: Event factuality identification via generative adversarial networks with auxiliary classification. In: IJCAI, pp. 4293–4300. ijcai.org (2018)

    Google Scholar 

  10. Rudinger, R., White, A.S., Durme, B.V.: Neural models of factuality. In: NAACL-HLT, pp. 731–744. Association for Computational Linguistics (2018)

    Google Scholar 

  11. Huang, R., Zou, B., Wang, H., Li, P., Zhou, G.: Event factuality detection in discourse. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 404–414. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_36

    Chapter  Google Scholar 

  12. Veyseh, A.P.B., Nguyen, T.H., Dou, D.: Graph based neural networks for event factuality prediction using syntactic and semantic structures. In: ACL (1), pp. 4393–4399. Association for Computational Linguistics (2019)

    Google Scholar 

  13. Kruengkrai, C., Yamagishi, J., Wang, X.: A multi-level attention model for evidence-based fact checking. In: ACL/IJCNLP (Findings). Findings of ACL, ACL/IJCNLP 2021, pp. 2447–2460. Association for Computational Linguistics (2021)

    Google Scholar 

  14. Yoneda, T., Mitchell, J., Welbl, J., Stenetorp, P., Riedel, S.: UCL machine reading group: four factor framework for fact finding (HexaF). In: Proceedings of the First Workshop on Fact Extraction and VERification (FEVER), pp. 97–102 (2018)

    Google Scholar 

  15. Hanselowski, A., et al.: UKP-Athene: multi-sentence textual entailment for claim verification. CoRR abs/1809.01479 (2018)

    Google Scholar 

  16. Zhou, J., et al.: GEAR: graph-based evidence aggregating and reasoning for fact verification. In: ACL (1), pp. 892–901. Association for Computational Linguistics (2019)

    Google Scholar 

  17. Nie, Y., Chen, H., Bansal, M.: Combining fact extraction and verification with neural semantic matching networks. In: AAAI, pp. 6859–6866. AAAI Press (2019)

    Google Scholar 

  18. Nie, Y., Wang, S., Bansal, M.: Revealing the importance of semantic retrieval for machine reading at scale. In: EMNLP/IJCNLP (1), pp. 2553–2566. Association for Computational Linguistics (2019)

    Google Scholar 

  19. Liu, Z., Xiong, C., Sun, M., Liu, Z.: Fine-grained fact verification with kernel graph attention network. In: ACL, pp. 7342–7351. Association for Computational Linguistics (2020)

    Google Scholar 

  20. Soleimani, A., Monz, C., Worring, M.: BERT for evidence retrieval and claim verification. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 359–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_45

    Chapter  Google Scholar 

  21. Si, J., Zhou, D., Li, T., Shi, X., He, Y.: Topic-aware evidence reasoning and stance-aware aggregation for fact verification. In: ACL/IJCNLP (1), pp. 1612–1622. Association for Computational Linguistics (2021)

    Google Scholar 

  22. Zhong, W., et al.: Reasoning over semantic-level graph for fact checking. In: ACL, pp. 6170–6180. Association for Computational Linguistics (2020)

    Google Scholar 

  23. Samarinas, C., Hsu, W., Lee, M.: Improving evidence retrieval for automated explainable fact-checking. In: NAACL-HLT (Demonstrations), pp. 84–91. Association for Computational Linguistics (2021)

    Google Scholar 

  24. Subramanian, S., Lee, K.: Hierarchical evidence set modeling for automated fact extraction and verification. In: EMNLP (1), pp. 7798–7809. Association for Computational Linguistics (2020)

    Google Scholar 

  25. Jiang, K., Pradeep, R., Lin, J.: Exploring listwise evidence reasoning with T5 for fact verification. In: ACL/IJCNLP (2), pp. 402–410. Association for Computational Linguistics (2021)

    Google Scholar 

  26. Yin, W., Roth, D.: TwoWingOS: a two-wing optimization strategy for evidential claim verification. In: EMNLP, pp. 105–114. Association for Computational Linguistics (2018)

    Google Scholar 

  27. Ma, J., Gao, W., Joty, S.R., Wong, K.: Sentence-level evidence embedding for claim verification with hierarchical attention networks. In: ACL (1), pp. 2561–2571. Association for Computational Linguistics (2019)

    Google Scholar 

  28. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Article  Google Scholar 

  29. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1), pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  30. Vincze, V., Szarvas, G., Farkas, R., Móra, G., Csirik, J.: The bioscope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinform. 9(S-11), 1–9 (2008)

    Google Scholar 

  31. Zou, B., Zhu, Q., Zhou, G.: Negation and speculation identification in Chinese language. In: ACL (1), pp. 656–665. The Association for Computer Linguistics (2015)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  33. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for natural language inference. In: ACL (1), pp. 1657–1668. Association for Computational Linguistics (2017)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the three anonymous reviewers for their comments on this paper. This research was supported by the National Natural Science Foundation of China (Nos. 61836007, and 62006167), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Qian, Z., Li, P., Zhu, X. (2022). Evidence-Based Document-Level Event Factuality Identification. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13630. Springer, Cham. https://doi.org/10.1007/978-3-031-20865-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20865-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20864-5

  • Online ISBN: 978-3-031-20865-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics