Nothing Special   »   [go: up one dir, main page]

Skip to main content

Soft Brain Ageing Indicators Based on Light-Weight LeNet-Like Neural Networks and Localized 2D Brain Age Biomarkers

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021)

Abstract

In recent years, there have been several proposed applications based on Convolutional Neural Networks (CNN) to neuroimaging data analysis and explanation. Traditional pipelines require several processing steps for feature extraction and ageing biomarker detection. However, modern deep learning strategies based on transfer learning and gradient-based explanations (e.g., Grad-Cam++) can provide a more powerful and reliable framework for automatic feature mapping, further identifying 3D ageing biomarkers. Despite the existence of several 3D CNN methods, we show that a LeNet-like 2D-CNN model trained on T1-weighted MRI images can be used to predict brain biological age in a classification task and, by transfer learning, in a regression task. In addition, automatic averaging and aligning of 2D-CNN gradient-based images is applied and shown to improve its biological meaning. The proposed model predicts soft biological brain ageing indicators with a six-class-balanced accuracy of \({\approx }70\%\) by using the anagraphic age of 1100 healthy subjects in comparison to their brain scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://brain-development.org/ixi-dataset/.

  2. 2.

    http://www.mrc-cbu.cam.ac.uk/camcan/.

References

  1. Ludwig, F.C., Smoke, M.E.: The measurement of biological age. Exp. Aging Res. 6(6), 497–522 (1980)

    Article  CAS  PubMed  Google Scholar 

  2. Abbott, A.: Dementia: a problem for our age. Nature 475(7355), S2–S4 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Cole, J.H., et al.: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163, 115–124 (2017)

    Article  PubMed  Google Scholar 

  4. Peng, H., Gong, W., Beckmann, C.F., Vedaldi, A., Smith, S.M.: Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 68, 101871 (2021)

    Article  PubMed  Google Scholar 

  5. Priscoli, M.D., et al.: Neuroblastoma cells classification through learning approaches by direct analysis of digital holograms. IEEE J. Sel. Top. Quantum Electron. 27(5), 1–9 (2021)

    Article  Google Scholar 

  6. Bardozzo, F., et al.: Motor strength classification with machine learning approaches applied to anatomical neuroimages. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  7. Chattopadhyay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: improved visual explanations for deep convolutional networks. arXiv preprint arXiv:1710.11063 (2017)

  8. Dinsdale, N.K., et al.: Learning patterns of the ageing brain in MRI using deep convolutional networks. NeuroImage 224, 117401 (2021). https://www.sciencedirect.com/science/article/pii/S1053811920308867

  9. Chittajallu, D.R., et al.: XAI-CBIR: explainable AI system for content based retrieval of video frames from minimally invasive surgery videos. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 66–69 (2019)

    Google Scholar 

  10. Payrovnaziri, S.N., et al.: Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J. Am. Med. Inf. Assoc. JAMIA 27(7), 1173–1185 (2020)

    Article  Google Scholar 

  11. Delli Priscoli, M., et al.: Neuroblastoma cells classification through learning approaches by direct analysis of digital holograms. IEEE J. Sel. Top. Quantum Electron. 27(5), 1–9 (2021)

    Article  Google Scholar 

  12. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2020)

    Article  Google Scholar 

  13. Lombardi, A., et al.: Explainable deep learning for personalized age prediction with brain morphology. Front. Neurosci. 15 (2021). https://www.frontiersin.org/article/10.3389/fnins.2021.674055

  14. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  15. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https://www.tensorflow.org/

  16. Taylor, J.R., et al.: The Cambridge centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage 144, 262–269 (2017)

    Article  PubMed  Google Scholar 

  17. Shafto, M.A., et al.: The Cambridge centre for ageing and neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 14(1), 204 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drayer, B.P.: Imaging of the aging brain. Part I. Normal findings. Radiology 166(3), 785–796 (1988)

    Article  CAS  PubMed  Google Scholar 

  19. Allen, J.S., Bruss, J., Brown, C.K., Damasio, H.: Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol. Aging 26(9), 1245–1260 (2005)

    Article  PubMed  Google Scholar 

  20. Fjell, A.M., et al.: One-year brain atrophy evident in healthy aging. J. Neurosci. 29(48), 15 223–15 231 (2009)

    Google Scholar 

  21. Walhovd, K.B., et al.: Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol. Aging 32(5), 916–932 (2011)

    Article  PubMed  Google Scholar 

  22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  23. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  25. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  26. Freedman, D., Pisani, R., Purves, R.: Statistics (international student edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New York (2007)

    Google Scholar 

  27. Smith, S.M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T.E., Miller, K.L.: Estimation of brain age delta from brain imaging. Neuroimage 200, 528–539 (2019)

    Article  PubMed  Google Scholar 

  28. Leonardsen, E.H., et al.: Deep neural networks learn general and clinically relevant representations of the ageing brain. Neuroimage 256, 119210 (2022)

    Article  PubMed  Google Scholar 

  29. Pardakhti, N., Sajedi, H.: Brain age estimation based on 3D MRI images using 3D convolutional neural network. Multimed. Tools Appl. 79(33), 25 051–25 065 (2020)

    Google Scholar 

  30. Shabanian, M., Wenzel, M., DeVincenzo, J.P.: Infant brain age classification: 2D CNN outperforms 3D CNN in small dataset. arXiv preprint arXiv:2112.13811 (2021)

  31. Ueda, M., et al.: An age estimation method using 3D-CNN from brain MRI images. In: IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 380–383. IEEE (2019)

    Google Scholar 

  32. Jiang, H., et al.: Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks. Front. Neurol. 10, 1346 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Download references

Acknowledgment

The authors would like to thank the Centre for Ageing and Neuroscience (CamCAN) to provide their data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Tagliaferri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bardozzo, F. et al. (2022). Soft Brain Ageing Indicators Based on Light-Weight LeNet-Like Neural Networks and Localized 2D Brain Age Biomarkers. In: Chicco, D., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science(), vol 13483. Springer, Cham. https://doi.org/10.1007/978-3-031-20837-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20837-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20836-2

  • Online ISBN: 978-3-031-20837-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics