Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intelligent Interpretation and Classification of Multivariate Medical Time Series Based on Convolutional Neural Networks

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Abstract

Physiological signals are bioelectrical signals generated by human organ interactions. These signals can timely reflect the real health status of the human body. With great success in various tasks, there are high expectations for deep learning networks to improve clinical practice. In this paper, we develop a deep neural network to automatically classify arrhythmias recorded by 12-lead electrocardiogram (ECG). And several experiments were conducted on a 12-lead ECG dataset to prove the effectiveness of the method. The mean F1 score of the model is 83.1%, which is 13% higher than the conventional VGG-60. Finally, we interpret the behavior of the model at the patient levels with the SHapley Additive exPlanations (SHAP) method to increase the interpretability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, A., Chauhan, A., Shetty, M.K., Gupta, M.D., Gupta, A., et al.: ECG-iCOVIDNet: interpretable AI model to identify changes in the ECG signals of post-covid subjects. Comput. Biol. Med. 146, 105540 (2022)

    Google Scholar 

  2. Dhakshaya, S., Auxillia, D.J.: Classification of ECG using convolutional neural network (CNN). In: 2019 International Conference on Recent Advances in Energy-Efficient Computing and Communication (ICRAECC), pp. 1–6. IEEE (2019)

    Google Scholar 

  3. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from Twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019)

    Article  Google Scholar 

  4. Ferretti, J., Barbiero, P., Randazzo, V., Cirrincione, G., Pasero, E.: Towards uncovering feature extraction from temporal signals in deep CNN: the ECG case study. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)

    Google Scholar 

  5. Ganeshkumar, M., Ravi, V., Sowmya, V., Gopalakrishnan, E., Soman, K.: Explainable deep learning-based approach for multilabel classification of electrocardiogram. IEEE Trans. Eng. Manag. (2021)

    Google Scholar 

  6. Hamdan, S., Awaian, A., Almajali, S.: Compression techniques used in IoT: a comparitive study. In: 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS), pp. 1–5. IEEE (2019)

    Google Scholar 

  7. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020)

    Article  Google Scholar 

  8. Hu, W., Wang, M., Qin, Q., Ma, J., Liu, B.: HRN: a holistic approach to one class learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19111–19124 (2020)

    Google Scholar 

  9. Huang, S., Liu, A., Zhang, S., Wang, T., Xiong, N.N.: BD-VTE: a novel baseline data based verifiable trust evaluation scheme for smart network systems. IEEE Trans. Netw. Sci. Eng. 8(3), 2087–2105 (2020)

    Article  Google Scholar 

  10. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2019)

    Article  Google Scholar 

  11. Jiang, Z., Almeida, T.P., Schlindwein, F.S., Ng, G.A., Zhou, H., Li, X.: Diagnostic of multiple cardiac disorders from 12-lead ECGs using graph convolutional network based multi-label classification. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  12. Lee, J., Park, J.S., Wang, K.N., Feng, B., Tennant, M., Kruger, E.: The use of telehealth during the coronavirus (Covid-19) pandemic in oral and maxillofacial surgery-a qualitative analysis. EAI Endorsed Trans. Scalable Inf. Syst. e10–e10 (2022)

    Google Scholar 

  13. Liu, Y., et al.: Multi-label classification of 12-lead ECGs by using residual CNN and class-wise attention. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  14. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Ma, L., Liang, L.: Enhance CNN robustness against noises for classification of 12-lead ECG with variable length. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 839–846. IEEE (2020)

    Google Scholar 

  16. Natesan, P., Gothai, E., et al.: Classification of multi-lead ECG signals to predict myocardial infarction using CNN. In: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), pp. 1029–1033. IEEE (2020)

    Google Scholar 

  17. Özaltın, Ö., Yeniay, Ö.: ECG classification performing feature extraction automatically using a hybrid CNN-SVM algorithm. In: 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5. IEEE (2021)

    Google Scholar 

  18. Pandey, D., Wang, H., Yin, X., Wang, K., Zhang, Y., Shen, J.: Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inf. Sci. Syst. 10(1), 1–19 (2022)

    Article  Google Scholar 

  19. Pardasani, R., Awasthi, N.: Classification of 12 lead ECG signal using 1D-convolutional neural network with class dependent threshold. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  20. Peng, D., Sun, L., Zhou, R., Wang, Y.: Study QoS-aware fog computing for disease diagnosis and prognosis. Mob. Netw. Appl. 1–8 (2022)

    Google Scholar 

  21. Qu, Z., Chen, S., Wang, X.: A secure controlled quantum image steganography algorithm. Quantum Inf. Process. 19(10), 1–25 (2020)

    Article  MathSciNet  Google Scholar 

  22. Qu, Z., Sun, H., Zheng, M.: An efficient quantum image steganography protocol based on improved EMD algorithm. Quantum Inf. Process. 20(2), 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  23. Rai, H.M., Chatterjee, K., Mukherjee, C.: Hybrid CNN-LSTM model for automatic prediction of cardiac arrhythmias from ECG big data. In: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1–6. IEEE (2020)

    Google Scholar 

  24. Ran, A., Ruan, D., Zheng, Y., Liu, H.: Multi-label classification of abnormalities in 12-lead ECG using deep learning. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  25. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020)

    Article  Google Scholar 

  26. Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Wang, K.: Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans. Scalable Inf. Syst. e15–e15 (2022)

    Google Scholar 

  27. Sarvan, Ç., Özkurt, N.: ECG beat arrhythmia classification by using 1-D CNN in case of class imbalance. In: 2019 Medical Technologies Congress (TIPTEKNO), pp. 1–4. IEEE (2019)

    Google Scholar 

  28. Singh, R., Zhang, Y., Wang, H., Miao, Y., Ahmed, K.: Investigation of social behaviour patterns using location-based data-a Melbourne case study. EAI Endorsed Trans. Scalable Inf. Syst. 8(31), e2 (2020)

    Google Scholar 

  29. Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)

    Article  Google Scholar 

  30. Sun, L., Wang, Y., Qu, Z., Xiong, N.N.: BeatClass: a sustainable ECG classification system in IoT-based eHealth. IEEE Internet Things J. 9(10), 7178–7195 (2021)

    Article  Google Scholar 

  31. Sun, L., Yu, Q., Peng, D., Subramani, S., Wang, X.: FogMed: a fog-based framework for disease prognosis based medical sensor data streams. CMC-Comput. Mater. Continua 66(1), 603–619 (2021)

    Article  Google Scholar 

  32. Sun, L., Zhong, Z., Qu, Z., Xiong, N.: PerAE: an effective personalized autoencoder for ECG-based biometric in augmented reality system. IEEE J. Biomed. Health Inform. 26(6), 2435–2446 (2022)

    Article  Google Scholar 

  33. Sun, L., Zhou, R., Peng, D., Bouguettaya, A., Zhang, Y.: Automatically building service-based systems with function relaxation. IEEE Trans. Cybern. (2022)

    Google Scholar 

  34. Sun, Z., Wang, C., Zhao, Y., Yan, C.: Multi-label ECG signal classification based on ensemble classifier. IEEE Access 8, 117986–117996 (2020)

    Article  Google Scholar 

  35. Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020)

    Article  Google Scholar 

  36. Tiryaki, E., Sonawane, A., Tamil, L.: Real-time CNN based ST depression episode detection using single-lead ECG. In: 2021 22nd International Symposium on Quality Electronic Design (ISQED), pp. 566–570. IEEE (2021)

    Google Scholar 

  37. Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian my health records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8(1), 1–9 (2020)

    Article  Google Scholar 

  38. Wang, Y., Sun, L., Subramani, S.: CAB: classifying arrhythmias based on imbalanced sensor data. KSII Trans. Internet Inf. Syst. (TIIS) 15(7), 2304–2320 (2021)

    Google Scholar 

  39. Xiaolin, L., Panicker, R.C., Cardiff, B., John, D.: Multistage pruning of CNN based ECG classifiers for edge devices. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1965–1968. IEEE (2021)

    Google Scholar 

  40. Yang, S., Xiang, H., Kong, Q., Wang, C.: Multi-label classification of electrocardiogram with modified residual networks. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  41. Yu, Q., Sun, L.: LPClass: lightweight personalized sensor data classification in computational social systems. IEEE Trans. Comput. Soc. Syst. (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, T., Sun, L., Subramani, S., Wang, Y. (2022). Intelligent Interpretation and Classification of Multivariate Medical Time Series Based on Convolutional Neural Networks. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics