Nothing Special   »   [go: up one dir, main page]

Skip to main content

Artificial Intelligence for Prevention of Breast Cancer

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1685))

Included in the following conference series:

  • 623 Accesses

Abstract

This paper show a computational tool that allow the analysis of the information obtained from a database that contains features of the fine needle aspiration (FNA) procedure, whose goal is to diagnose breast masses applying artificial intelligence. The methodology include the recollection of data, process of cleaning, neural networks and Bayesian’s networks for prediction of the data, evaluation and comparison.

Supported by Universidad de La Salle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dalwinder, S., Birmohan, S., Manpreet, K.: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer. Biocybern. Biomed. Eng. 40(1), 337–351 (2020). https://doi.org/10.1016/j.bbe.2019.12.004, https://linkinghub.elsevier.com/retrieve/pii/S0208521619304905

  2. Jarraya, A., Leray, P., Masmoudi, A.: Discrete exponential Bayesian networks: an extension of Bayesian networks to discrete natural exponential families. In: 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp. 205–208 (2011). https://doi.org/10.1109/ICTAI.2011.38, ISSN: 2375-0197

  3. Lugo-Reyes, S.O., Maldonado-Colín, G., Murata, C.: Inteligencia artificial para asistir el diagnóstico clínico en medicina. Revista Alergia México. 61(2), 110–120 (2014). https://doi.org/10.29262/ram.v61i2.33, http://revistaalergia.mx/ojs/index.php/ram/article/view/33

  4. Puga, J.L., Krzywinski, M., Altman, N.: Bayes’ theorem. Nat. Methods. 12(4), 277–278 (2015). https://doi.org/10.1038/nmeth.3335, https://www.nature.com/articles/nmeth.3335

  5. Ramírez, C.M.R.: Plan nacional para el control del cáncer en colombia. Ministerio de Salud, p. 85 (2012)

    Google Scholar 

  6. Repaka, A.N., Ravikanti, S.D., Franklin, R.G.: Design and implementing heart disease prediction using naives bayesian. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 292–297 (2019). https://doi.org/10.1109/ICOEI.2019.8862604

  7. Reyes, G.V., Thompson, E.B., Vanoye, J.A.R., Penna, A.F.: Modelos De Tecnologias Del Big Data Analytics y su aplicación en Salud. Pistas Educativas. 39(128), 1174 (2020). http://www.itcelaya.edu.mx/ojs/index.php/pistas/article/view/1174

  8. Zemouri, R., et al.: Constructive deep neural network for breast cancer diagnosis. IFAC-PapersOnLine. 51(27), 98–103 (2018). https://doi.org/10.1016/j.ifacol.2018.11.660, http://www.sciencedirect.com/science/article/pii/S2405896318333767

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Lancheros-Cuesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lancheros-Cuesta, D., Bustos, J.C., Rubiano, N., Tumialan, A. (2022). Artificial Intelligence for Prevention of Breast Cancer. In: Figueroa-García, J.C., Franco, C., Díaz-Gutierrez, Y., Hernández-Pérez, G. (eds) Applied Computer Sciences in Engineering. WEA 2022. Communications in Computer and Information Science, vol 1685. Springer, Cham. https://doi.org/10.1007/978-3-031-20611-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20611-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20610-8

  • Online ISBN: 978-3-031-20611-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics