Abstract
This paper show a computational tool that allow the analysis of the information obtained from a database that contains features of the fine needle aspiration (FNA) procedure, whose goal is to diagnose breast masses applying artificial intelligence. The methodology include the recollection of data, process of cleaning, neural networks and Bayesian’s networks for prediction of the data, evaluation and comparison.
Supported by Universidad de La Salle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dalwinder, S., Birmohan, S., Manpreet, K.: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer. Biocybern. Biomed. Eng. 40(1), 337–351 (2020). https://doi.org/10.1016/j.bbe.2019.12.004, https://linkinghub.elsevier.com/retrieve/pii/S0208521619304905
Jarraya, A., Leray, P., Masmoudi, A.: Discrete exponential Bayesian networks: an extension of Bayesian networks to discrete natural exponential families. In: 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp. 205–208 (2011). https://doi.org/10.1109/ICTAI.2011.38, ISSN: 2375-0197
Lugo-Reyes, S.O., Maldonado-Colín, G., Murata, C.: Inteligencia artificial para asistir el diagnóstico clínico en medicina. Revista Alergia México. 61(2), 110–120 (2014). https://doi.org/10.29262/ram.v61i2.33, http://revistaalergia.mx/ojs/index.php/ram/article/view/33
Puga, J.L., Krzywinski, M., Altman, N.: Bayes’ theorem. Nat. Methods. 12(4), 277–278 (2015). https://doi.org/10.1038/nmeth.3335, https://www.nature.com/articles/nmeth.3335
Ramírez, C.M.R.: Plan nacional para el control del cáncer en colombia. Ministerio de Salud, p. 85 (2012)
Repaka, A.N., Ravikanti, S.D., Franklin, R.G.: Design and implementing heart disease prediction using naives bayesian. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 292–297 (2019). https://doi.org/10.1109/ICOEI.2019.8862604
Reyes, G.V., Thompson, E.B., Vanoye, J.A.R., Penna, A.F.: Modelos De Tecnologias Del Big Data Analytics y su aplicación en Salud. Pistas Educativas. 39(128), 1174 (2020). http://www.itcelaya.edu.mx/ojs/index.php/pistas/article/view/1174
Zemouri, R., et al.: Constructive deep neural network for breast cancer diagnosis. IFAC-PapersOnLine. 51(27), 98–103 (2018). https://doi.org/10.1016/j.ifacol.2018.11.660, http://www.sciencedirect.com/science/article/pii/S2405896318333767
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lancheros-Cuesta, D., Bustos, J.C., Rubiano, N., Tumialan, A. (2022). Artificial Intelligence for Prevention of Breast Cancer. In: Figueroa-García, J.C., Franco, C., Díaz-Gutierrez, Y., Hernández-Pérez, G. (eds) Applied Computer Sciences in Engineering. WEA 2022. Communications in Computer and Information Science, vol 1685. Springer, Cham. https://doi.org/10.1007/978-3-031-20611-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-20611-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20610-8
Online ISBN: 978-3-031-20611-5
eBook Packages: Computer ScienceComputer Science (R0)