Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

The tremendous increase in the amount of GPS (GPS) data transferred by Internet of Things (IoT) devices emphasized the importance of GPS compression techniques. The compression techniques target decreasing the size of data representing the trajectory to minimize the cost of transferring and processing these data. Key aspects of compression techniques is to achieve highest possible accuracy with maximum compression ratio as possible in a reasonable time. This paper targets compression in IoT domain, prioritizing the complexity of the algorithm (performance) key aspect. An implementation for the batched Sliding Window (SW) technique is introduced in this paper, in addition to two novel approaches. A real time Fuzzy Sampler (FS) approach using fuzzy compression that resulted in a significant improvement in the running time compared to the offline and batched SW techniques, while resulting in a smaller compression ratio. Another approach Fuzzy Sampling Window Segmentation (FSW) is to add the FS as a filter to the batched SW technique which resulted in a significant improvement in performance compared to traditional techniques and small decrease in compression ratio. The FS technique is more suitable for low complexity hardware, where small computational power are available, while the FSW requires higher computational power compared to FS and results in higher compression ratios, thus lower transfer cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Makris, A., Tserpes, K., Anagnostopoulos, D., Nikolaidou, M., de Macedo, J.A.F.: Database system comparison based on spatiotemporal functionality, IDEAS ’19. Association for Computing Machinery, New York, NY, USA, (2019). https://doi.org/10.1145/3331076.3331101

  2. Makris, A., Tserpes, K., Spiliopoulos, G., Zissis, D., Anagnostopoulos, D.: MongoDB Vs PostgreSQL: a comparative study on performance aspects. GeoInformatica, 1–25 (2020). https://doi.org/10.1007/s10707-020-00407-w

  3. Meratnia, N., de By, R.A., Bertino, E. et al., (eds): Spatiotemporal compression techniques for moving point objects. In: Bertino, E. et al. (eds), Advances in Database Technology - EDBT 2004, pp. 765–782. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  4. Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6), 2218–2245 (2013). https://www.mdpi.com/1099-4300/15/6/2218. https://doi.org/10.3390/e15062218

  5. Zissis, D., Chatzikokolakis, K., Spiliopoulos, G., Vodas, M.: A distributed spatial method for modeling maritime routes. IEEE Access 8, 47556–47568 (2020). https://doi.org/10.1109/ACCESS.2020.2979612

    Article  Google Scholar 

  6. Li, L., Xia, X., Liu, X., An, Y.: Batched trajectory compression algorithm based on hierarchical grid coordinates, pp. 414–418 (2019)

    Google Scholar 

  7. Kontopoulos, I., Spiliopoulos, G., Zissis, D., Chatzikokolakis, K., Artikis, A.: Countering real-time stream poisoning: an architecture for detecting vessel spoofing in streams of AIS data, pp. 981–986 (2018)

    Google Scholar 

  8. Kontopoulos, I., Chatzikokolakis, K., Zissis, D., Tserpes, K., Spiliopoulos, G.: Real-time maritime anomaly detection: detecting intentional AIS switch-off. Int. J. Big Data Intell. 7(2), 85–96 (2020). https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2020.107375. https://doi.org/10.1504/IJBDI.2020.107375, https://www.inderscienceonline.com/doi/pdf/10.1504/IJBDI.2020.107375

  9. Kontopoulos, I., Chatzikokolakis, K., Tserpes, K., Zissis, D.: Classification of vessel activity in streaming data, DEBS ’20, pp. 153–164. Association for Computing Machinery, New York, NY, USA, (2020). https://doi.org/10.1145/3401025.3401763

  10. Jialong, J., J. B., Wei, Z.: Trajectory segmentation algorithm based on behavior pattern. J. Signal Process. 36(12), 2074 (2020). http://www.signal.org.cn/EN/abstract/article_20957.shtml. https://doi.org/10.16798/j.issn.1003-0530.2020.12.014

  11. Cai, G., Lee, K., Lee, I.: Mining semantic trajectory patterns from geo-tagged data. J. Comput. Sci. Technol. 33(4), 849–862 (2018). https://doi.org/10.1007/s11390-018-1860-1

    Article  Google Scholar 

  12. Cai, G., Lee, K., Lee, I.: Mining mobility patterns from geotagged photos through semantic trajectory clustering. Cybernet. Syst. 49(4), 234–256 (2018). https://doi.org/10.1080/01969722.2018.1448236

  13. Wei, Z., Xie, X., Zhang, X.: AIS trajectory simplification algorithm considering ship behaviours. Ocean Eng. 216, 108086 (2020). https://www.sciencedirect.com/science/article/pii/S0029801820310271. https://doi.org/10.1016/j.oceaneng.2020.108086

  14. Fikioris, G., Patroumpas, K., Artikis, A.: Optimizing vessel trajectory compression, pp. 281–286 (2020)

    Google Scholar 

  15. Liang, M. et al.: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation. Ocean Eng. 225, 108803 (2021). https://www.sciencedirect.com/science/article/pii/S0029801821002389. https://doi.org/10.1016/j.oceaneng.2021.108803

  16. Etemad, M., Soares, A., Etemad, E., Rose, J., Torgo, L., Matwin, S.: SWS: an unsupervised trajectory segmentation algorithm based on change detection with interpolation kernels. GeoInformatica 25(2), 269–289 (2020). https://doi.org/10.1007/s10707-020-00408-9

    Article  Google Scholar 

  17. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E.: RFID-data compression for supporting aggregate queries. ACM Trans. Database Syst. 38(2) (2013). https://doi.org/10.1145/2487259.2487263

  18. Soares Jr., A., Cesario Times, V., Renso, C., Matwin, S., Cabral, L.A.: A semi-supervised approach for the semantic segmentation of trajectories, pp. 145–154 (2018)

    Google Scholar 

  19. Makris, A., Kontopoulos, I., Alimisis, P., Tserpes, K.: A comparison of trajectory compression algorithms over AIS data. IEEE Access 9, 92516–92530 (2021). https://doi.org/10.1109/ACCESS.2021.3092948

  20. Leichsenring, Y.E., Baldo, F.: An evaluation of compression algorithms applied to moving object trajectories. Int. J. Geograph. Inf. Sci. 34(3), 539–558 (2020). https://doi.org/10.1080/13658816.2019.1676430

  21. Sun, P., Xia, S., Yuan, G., Li, D.: An overview of moving object trajectory compression algorithms. Math. Problems Eng. 2016, 6587309 (2016). https://doi.org/10.1155/2016/6587309

  22. Muckell, J., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Algorithms for compressing GPS trajectory data: an empirical evaluation, GIS ’10, 402-405. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1869790.1869847

  23. Amigo, D., Pedroche, D.S., García, J., Molina, J.M.: Review and classification of trajectory summarisation algorithms: from compression to segmentation. Int. J. Distributed Sensor Netw. 17(10), 15501477211050729 (2021). https://doi.org/10.1177/15501477211050729

  24. Makris, A., Silva, C.L., Bogorny, V., Alvares, L.O., Macedo, J.A., Tserpes, K.: Evaluating the effect of compressing algorithms for trajectory similarity and classification problems. GeoInformatica 25(4), 679–711 (2021). https://doi.org/10.1007/s10707-021-00434-1

    Article  Google Scholar 

  25. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geographic Inf. Geovisualization 10(2), 112–122 (1973). https://doi.org/10.3138/FM57-6770-U75U-7727

  26. Zhao, L., Shi, G.: A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm. Ocean Eng. 166, 37–46 (2018). https://www.sciencedirect.com/science/article/pii/S0029801818314872. https://doi.org/10.1016/j.oceaneng.2018.08.005

  27. Zhao, L., Shi, G.: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition. Ocean Eng. 172, 456–467 (2019). https://www.sciencedirect.com/science/article/pii/S0029801818304074. https://doi.org/10.1016/j.oceaneng.2018.12.019

  28. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series, pp. 289–296 (2001)

    Google Scholar 

  29. Muckell, J. et al.: Squish: an online approach for GPS trajectory compression, COM.Geo ’11. In: Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1999320.1999333

  30. Muckell, J., Olsen, P.W., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica 18(3), 435–460 (2013). https://doi.org/10.1007/s10707-013-0184-0

    Article  Google Scholar 

  31. Zhang, S., Zhang, J., Qi, L.: Trajectory data compression algorithm based on motion state changing. Math. Problems Eng. 2021, 6647074 (2021). https://doi.org/10.1155/2021/6647074

  32. Ouyang, Z., Xue, L., Ding, F., Li, D.: PSOTSC: a global-oriented trajectory segmentation and compression algorithm based on swarm intelligence. ISPRS Int. J. Geo-Inf. 10(12) (2021). https://www.mdpi.com/2220-9964/10/12/817

  33. Makris, A., Kontopoulos, I., Alimisis, P., Tserpes, K.: A comparison of trajectory compression algorithms over AIS data. IEEE Access, 1–1 (2021). https://doi.org/10.1109/ACCESS.2021.3092948

  34. Huang, Y., Li, Y., Zhang, Z., Liu, R.W.: GPU-accelerated compression and visualization of large-scale vessel trajectories in maritime IOT industries. IEEE Internet Things J. 7(11), 10794–10812 (2020). https://doi.org/10.1109/JIOT.2020.2989398

    Article  Google Scholar 

  35. Liu, L., Li, B., Guo, R.: Consensus control for networked manipulators with switched parameters and topologies. IEEE Access 9, 9209–9217 (2021). https://doi.org/10.1109/ACCESS.2021.3049261

    Article  Google Scholar 

  36. Li, R., Hu, C.: Maximum principle for near-optimality of mean-field FBSDES. Math. Problems Eng. 2020, 8572959 (2020). https://doi.org/10.1155/2020/8572959

  37. Wang, W., He, Y., Liu, J., Gombault, S.: Constructing important features from massive network traffic for lightweight intrusion detection. IET Inf. Secur. 9(6), 374–379 (2015). https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ifs.2014.0353. https://doi.org/10.1049/iet-ifs.2014.0353. https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2014.0353

  38. Chen, C., et al.: Trajcompressor: an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. IEEE Trans. Intell. Transport. Syst. 21(5), 2012–2028 (2020). https://doi.org/10.1109/TITS.2019.2910591

    Article  Google Scholar 

  39. Zheng, Y., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories (2009). https://www.microsoft.com/en-us/research/publication/mining-interesting-locations-and-travel-sequences-from-gps-trajectories/. WWW (2009)

  40. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ying Ma, W.: 1 understanding mobility based on GPS data

    Google Scholar 

  41. Zheng, Y., Xie, X., Ma, W.-Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data(base) Eng. Bull. (2010). https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa E. ElZonkoly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ElZonkoly, M.E., Madbouly, M.M., Gurguis, S.K. (2023). Real Time Adaptive GPS Trajectory Compression. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, TW., Chang, KC. (eds) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022. AISI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-031-20601-6_32

Download citation

Publish with us

Policies and ethics