Abstract
The tremendous increase in the amount of GPS (GPS) data transferred by Internet of Things (IoT) devices emphasized the importance of GPS compression techniques. The compression techniques target decreasing the size of data representing the trajectory to minimize the cost of transferring and processing these data. Key aspects of compression techniques is to achieve highest possible accuracy with maximum compression ratio as possible in a reasonable time. This paper targets compression in IoT domain, prioritizing the complexity of the algorithm (performance) key aspect. An implementation for the batched Sliding Window (SW) technique is introduced in this paper, in addition to two novel approaches. A real time Fuzzy Sampler (FS) approach using fuzzy compression that resulted in a significant improvement in the running time compared to the offline and batched SW techniques, while resulting in a smaller compression ratio. Another approach Fuzzy Sampling Window Segmentation (FSW) is to add the FS as a filter to the batched SW technique which resulted in a significant improvement in performance compared to traditional techniques and small decrease in compression ratio. The FS technique is more suitable for low complexity hardware, where small computational power are available, while the FSW requires higher computational power compared to FS and results in higher compression ratios, thus lower transfer cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Makris, A., Tserpes, K., Anagnostopoulos, D., Nikolaidou, M., de Macedo, J.A.F.: Database system comparison based on spatiotemporal functionality, IDEAS ’19. Association for Computing Machinery, New York, NY, USA, (2019). https://doi.org/10.1145/3331076.3331101
Makris, A., Tserpes, K., Spiliopoulos, G., Zissis, D., Anagnostopoulos, D.: MongoDB Vs PostgreSQL: a comparative study on performance aspects. GeoInformatica, 1–25 (2020). https://doi.org/10.1007/s10707-020-00407-w
Meratnia, N., de By, R.A., Bertino, E. et al., (eds): Spatiotemporal compression techniques for moving point objects. In: Bertino, E. et al. (eds), Advances in Database Technology - EDBT 2004, pp. 765–782. Springer, Berlin, Heidelberg (2004)
Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6), 2218–2245 (2013). https://www.mdpi.com/1099-4300/15/6/2218. https://doi.org/10.3390/e15062218
Zissis, D., Chatzikokolakis, K., Spiliopoulos, G., Vodas, M.: A distributed spatial method for modeling maritime routes. IEEE Access 8, 47556–47568 (2020). https://doi.org/10.1109/ACCESS.2020.2979612
Li, L., Xia, X., Liu, X., An, Y.: Batched trajectory compression algorithm based on hierarchical grid coordinates, pp. 414–418 (2019)
Kontopoulos, I., Spiliopoulos, G., Zissis, D., Chatzikokolakis, K., Artikis, A.: Countering real-time stream poisoning: an architecture for detecting vessel spoofing in streams of AIS data, pp. 981–986 (2018)
Kontopoulos, I., Chatzikokolakis, K., Zissis, D., Tserpes, K., Spiliopoulos, G.: Real-time maritime anomaly detection: detecting intentional AIS switch-off. Int. J. Big Data Intell. 7(2), 85–96 (2020). https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2020.107375. https://doi.org/10.1504/IJBDI.2020.107375, https://www.inderscienceonline.com/doi/pdf/10.1504/IJBDI.2020.107375
Kontopoulos, I., Chatzikokolakis, K., Tserpes, K., Zissis, D.: Classification of vessel activity in streaming data, DEBS ’20, pp. 153–164. Association for Computing Machinery, New York, NY, USA, (2020). https://doi.org/10.1145/3401025.3401763
Jialong, J., J. B., Wei, Z.: Trajectory segmentation algorithm based on behavior pattern. J. Signal Process. 36(12), 2074 (2020). http://www.signal.org.cn/EN/abstract/article_20957.shtml. https://doi.org/10.16798/j.issn.1003-0530.2020.12.014
Cai, G., Lee, K., Lee, I.: Mining semantic trajectory patterns from geo-tagged data. J. Comput. Sci. Technol. 33(4), 849–862 (2018). https://doi.org/10.1007/s11390-018-1860-1
Cai, G., Lee, K., Lee, I.: Mining mobility patterns from geotagged photos through semantic trajectory clustering. Cybernet. Syst. 49(4), 234–256 (2018). https://doi.org/10.1080/01969722.2018.1448236
Wei, Z., Xie, X., Zhang, X.: AIS trajectory simplification algorithm considering ship behaviours. Ocean Eng. 216, 108086 (2020). https://www.sciencedirect.com/science/article/pii/S0029801820310271. https://doi.org/10.1016/j.oceaneng.2020.108086
Fikioris, G., Patroumpas, K., Artikis, A.: Optimizing vessel trajectory compression, pp. 281–286 (2020)
Liang, M. et al.: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation. Ocean Eng. 225, 108803 (2021). https://www.sciencedirect.com/science/article/pii/S0029801821002389. https://doi.org/10.1016/j.oceaneng.2021.108803
Etemad, M., Soares, A., Etemad, E., Rose, J., Torgo, L., Matwin, S.: SWS: an unsupervised trajectory segmentation algorithm based on change detection with interpolation kernels. GeoInformatica 25(2), 269–289 (2020). https://doi.org/10.1007/s10707-020-00408-9
Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E.: RFID-data compression for supporting aggregate queries. ACM Trans. Database Syst. 38(2) (2013). https://doi.org/10.1145/2487259.2487263
Soares Jr., A., Cesario Times, V., Renso, C., Matwin, S., Cabral, L.A.: A semi-supervised approach for the semantic segmentation of trajectories, pp. 145–154 (2018)
Makris, A., Kontopoulos, I., Alimisis, P., Tserpes, K.: A comparison of trajectory compression algorithms over AIS data. IEEE Access 9, 92516–92530 (2021). https://doi.org/10.1109/ACCESS.2021.3092948
Leichsenring, Y.E., Baldo, F.: An evaluation of compression algorithms applied to moving object trajectories. Int. J. Geograph. Inf. Sci. 34(3), 539–558 (2020). https://doi.org/10.1080/13658816.2019.1676430
Sun, P., Xia, S., Yuan, G., Li, D.: An overview of moving object trajectory compression algorithms. Math. Problems Eng. 2016, 6587309 (2016). https://doi.org/10.1155/2016/6587309
Muckell, J., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Algorithms for compressing GPS trajectory data: an empirical evaluation, GIS ’10, 402-405. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1869790.1869847
Amigo, D., Pedroche, D.S., García, J., Molina, J.M.: Review and classification of trajectory summarisation algorithms: from compression to segmentation. Int. J. Distributed Sensor Netw. 17(10), 15501477211050729 (2021). https://doi.org/10.1177/15501477211050729
Makris, A., Silva, C.L., Bogorny, V., Alvares, L.O., Macedo, J.A., Tserpes, K.: Evaluating the effect of compressing algorithms for trajectory similarity and classification problems. GeoInformatica 25(4), 679–711 (2021). https://doi.org/10.1007/s10707-021-00434-1
Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geographic Inf. Geovisualization 10(2), 112–122 (1973). https://doi.org/10.3138/FM57-6770-U75U-7727
Zhao, L., Shi, G.: A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm. Ocean Eng. 166, 37–46 (2018). https://www.sciencedirect.com/science/article/pii/S0029801818314872. https://doi.org/10.1016/j.oceaneng.2018.08.005
Zhao, L., Shi, G.: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition. Ocean Eng. 172, 456–467 (2019). https://www.sciencedirect.com/science/article/pii/S0029801818304074. https://doi.org/10.1016/j.oceaneng.2018.12.019
Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series, pp. 289–296 (2001)
Muckell, J. et al.: Squish: an online approach for GPS trajectory compression, COM.Geo ’11. In: Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1999320.1999333
Muckell, J., Olsen, P.W., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica 18(3), 435–460 (2013). https://doi.org/10.1007/s10707-013-0184-0
Zhang, S., Zhang, J., Qi, L.: Trajectory data compression algorithm based on motion state changing. Math. Problems Eng. 2021, 6647074 (2021). https://doi.org/10.1155/2021/6647074
Ouyang, Z., Xue, L., Ding, F., Li, D.: PSOTSC: a global-oriented trajectory segmentation and compression algorithm based on swarm intelligence. ISPRS Int. J. Geo-Inf. 10(12) (2021). https://www.mdpi.com/2220-9964/10/12/817
Makris, A., Kontopoulos, I., Alimisis, P., Tserpes, K.: A comparison of trajectory compression algorithms over AIS data. IEEE Access, 1–1 (2021). https://doi.org/10.1109/ACCESS.2021.3092948
Huang, Y., Li, Y., Zhang, Z., Liu, R.W.: GPU-accelerated compression and visualization of large-scale vessel trajectories in maritime IOT industries. IEEE Internet Things J. 7(11), 10794–10812 (2020). https://doi.org/10.1109/JIOT.2020.2989398
Liu, L., Li, B., Guo, R.: Consensus control for networked manipulators with switched parameters and topologies. IEEE Access 9, 9209–9217 (2021). https://doi.org/10.1109/ACCESS.2021.3049261
Li, R., Hu, C.: Maximum principle for near-optimality of mean-field FBSDES. Math. Problems Eng. 2020, 8572959 (2020). https://doi.org/10.1155/2020/8572959
Wang, W., He, Y., Liu, J., Gombault, S.: Constructing important features from massive network traffic for lightweight intrusion detection. IET Inf. Secur. 9(6), 374–379 (2015). https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ifs.2014.0353. https://doi.org/10.1049/iet-ifs.2014.0353. https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2014.0353
Chen, C., et al.: Trajcompressor: an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. IEEE Trans. Intell. Transport. Syst. 21(5), 2012–2028 (2020). https://doi.org/10.1109/TITS.2019.2910591
Zheng, Y., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories (2009). https://www.microsoft.com/en-us/research/publication/mining-interesting-locations-and-travel-sequences-from-gps-trajectories/. WWW (2009)
Zheng, Y., Li, Q., Chen, Y., Xie, X., Ying Ma, W.: 1 understanding mobility based on GPS data
Zheng, Y., Xie, X., Ma, W.-Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data(base) Eng. Bull. (2010). https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
ElZonkoly, M.E., Madbouly, M.M., Gurguis, S.K. (2023). Real Time Adaptive GPS Trajectory Compression. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, TW., Chang, KC. (eds) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022. AISI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-031-20601-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-20601-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20600-9
Online ISBN: 978-3-031-20601-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)