Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discontinuous Galerkin Method for Linear Wave Equations Involving Derivatives of the Dirac Delta Distribution

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137))

  • 527 Accesses

Abstract

Linear wave equations sourced by a dirac delta distribution δ(x) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to nδ∂xn. Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source’s location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term’s singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to δ(x). Numerical experiments verify this behavior and our scheme’s convergence properties by comparing against exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term \(\dot {\phi }(0,x)\) is found from evaluation of the evolution equation (15), \(\dot {\phi } = -\pi {}'- \dot {F}(t) \delta {}(x)\), at t = 0.

References

  1. Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1(1), 1–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Canizares, P., Sopuerta, C.F.: Simulations of extreme-mass-ratio inspirals using pseudospectral methods. In: Journal of Physics: Conference Series, vol. 154, p. 012053. IOP Publishing (2009)

    Google Scholar 

  3. Canizares, P., Sopuerta, C.F., Jaramillo, J.L.: Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a schwarzschild black hole. Phys. Rev. D 82(4), 044023 (2010)

    Article  Google Scholar 

  4. Casti, A.R.R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., Sirovich, L.: A population study of integrate-and-fire-or-burst neurons. Neural Comput. 14(5), 957–986 (2002)

    Article  MATH  Google Scholar 

  5. Cockburn, B.: An introduction to the discontinuous Galerkin method for convection-dominated problems. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, June 23–28, 1997. Lecture Notes in Physics, pp. 150–268. Springer, Berlin (1998). https://doi.org/10.1007/BFb0096353

  6. Cockburn, B.: Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. J. Comput. Appl. Math. 128, 187 (2001). https://doi.org/10.1016/S0377-0427(00)00512-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V. Multidimensional systems. J. Comput. Phys. 141, 199 (1998). https://doi.org/10.1006/jcph.1998.5892

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, pp. 3–50. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-59721-3_1

    Chapter  Google Scholar 

  9. Engquist, B., Tornberg, A.K., Tsai, R.: Discretization of dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, K., Cai, W., Ji, X.: A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions. J. Comput. Phys. 227(4), 2387–2410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Field, S.E., Hesthaven, J.S., Lau, S.R.: Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries. Class. Quantum Grav. 26, 165010 (2009). https://doi.org/10.1088/0264-9381/26/16/165010

    Article  MathSciNet  MATH  Google Scholar 

  12. Field, S.E., Hesthaven, J.S., Lau, S.R.: Persistent junk solutions in time-domain modeling of extreme mass ratio binaries. Phys. Rev. D 81(12), 124030 (2010)

    Article  Google Scholar 

  13. Field, S.E., Gottlieb, S., Grant, Z.J., Isherwood, L.F., Khanna, G.: A GPU-accelerated mixed-precision WENO method for extremal black hole and gravitational wave physics computations. Commun. Appl. Math. Comput., 1–19 (2021). https://doi.org/10.1007/s42967-021-00129-2

  14. Friedlander, F.G., Joshi, M.S., Joshi, M., Joshi, M.C.: Introduction to the Theory of Distributions. Cambridge University Press (1998)

    Google Scholar 

  15. Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008). https://doi.org/10.1007/978-0-387-72067-8

  16. Jung, J.H., Khanna, G., Nagle, I.: A spectral collocation approximation for the radial-infall of a compact object into a Schwarzschild black hole. Int. J. Mod. Phys. C 20(11), 1827–1848 (2009)

    Article  MATH  Google Scholar 

  17. Lousto, C.O.: A time-domain fourth-order-convergent numerical algorithm to integrate black hole perturbations in the extreme-mass-ratio limit. Classical Quantum Gravity 22(15), S543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petersson, N.A., Sjogreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8(5), 1074–1110 (2010), 8(LLNL-JRNL-419382) (2009)

    Google Scholar 

  19. Poisson, E., Pound, A., Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativity 14(1), 1–190 (2011)

    Article  MATH  Google Scholar 

  20. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. In: Conference: National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, Ann Arbor, Michigan, USA, 8 Apr 1973 LA-UR–73-479, CONF-730414–2 (1973). http://www.osti.gov/scitech/servlets/purl/4491151

  21. Shearer, P.M.: Introduction to Seismology. Cambridge University Press (2019)

    Google Scholar 

  22. Sopuerta, C.F., Laguna, P.: Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a nonrotating black hole. Phys. Rev. D 73(4), 044028 (2006)

    Article  Google Scholar 

  23. Stakgold, I., Holst, M.J.: Green’s Functions and Boundary Value Problems, vol. 99. Wiley (2011)

    Google Scholar 

  24. Sundararajan, P.A., Khanna, G., Hughes, S.A.: Towards adiabatic waveforms for inspiral into kerr black holes: A new model of the source for the time domain perturbation equation. Phys. Rev. D 76(10), 104005 (2007)

    Article  Google Scholar 

  25. Sundararajan, P.A., Khanna, G., Hughes, S.A., Drasco, S.: Towards adiabatic waveforms for inspiral into kerr black holes. II. Dynamical sources and generic orbits. Phys. Rev. D 78(2), 024022 (2008)

    Google Scholar 

  26. Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200(2), 462–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, Y., Shu, C.W.: Discontinuous Galerkin method for hyperbolic equations involving δ-singularities: negative-order norm error estimates and applications. Numer. Math. 124(4), 753–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Manas Vishal for providing an independent check of Theorem 1 using Mathematica. The authors acknowledge support of NSF Grants No. PHY-2010685 (G.K) and No. DMS-1912716 (S.F, S.G, and G.K), AFOSR Grant No. FA9550-18-1-0383 (S.G) and Office of Naval Research/Defense University Research Instrumentation Program (ONR/DURIP) Grant No. N00014181255. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while a subset of the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Advances in Computational Relativity program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Field, S.E., Gottlieb, S., Khanna, G., McClain, E. (2023). Discontinuous Galerkin Method for Linear Wave Equations Involving Derivatives of the Dirac Delta Distribution. In: Melenk, J.M., Perugia, I., Schöberl, J., Schwab, C. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1. Lecture Notes in Computational Science and Engineering, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-031-20432-6_19

Download citation

Publish with us

Policies and ethics