Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Exploratory Study on Hindcasting with Analogue Ensembles of Principal Components

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

The aim of this study is the reconstruction of meteorological data that are missing in a given station by means of the data from neighbouring stations. To achieve this, the Analogue Ensemble (AnEn) method was applied to the Principal Components (PCs) of the time series dataset, computed via Principal Component Analysis. This combination allows exploring the possibility of reducing the number of meteorological variables used in the reconstruction. The proposed technique is greatly influenced by the choice of the number of PCs used in the data reconstruction. The number of favorable PC varies according to the predicted variable and weather station. This choice is directly linked to the variables correlation. The application of AnEn using PCs leads to improvements of 8% to 21% in the RMSE of wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balsa, C., Rodrigues, C.V., Lopes, I., Rufino, J.: Using analog ensembles with alternative metrics for hindcasting with multistations. ParadigmPlus 1(2), 1–17 (2020). https://journals.itiud.org/index.php/paradigmplus/article/view/11

  2. Balsa, C., Rodrigues, C.V., Araújo, L., Rufino, J.: Hindcasting with cluster-based analogues. In: Guarda, T., Portela, F., Santos, M.F. (eds.) ARTIIS 2021. CCIS, vol. 1485, pp. 346–360. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90241-4_27

    Chapter  Google Scholar 

  3. Balsa, C., Rodrigues, C.V., Araújo, L., Rufino, J.: Cluster-based analogue ensembles for hindcasting with multistations. Computation 10(6), 91 (2022). https://doi.org/10.3390/computation10060091

  4. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  5. Davò, F., Alessandrini, S., Sperati, S., Monache, L.D., Airoldi, D., Vespucci, M.T.: Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting. Solar Energy 134, 327–338 (2016). https://doi.org/10.1016/j.solener.2016.04.049

  6. Eldén, L.: Matrix Methods in Data Mining and Pattern Recognition. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  7. Hu, W., Vento, D., Su, S.: Parallel analog ensemble - the power of weather analogs. In: Proceedings of the 2020 Improving Scientific Software Conference, pp. 1–14. NCAR, May 2020. https://doi.org/10.5065/P2JJ-9878

  8. Monache, L.D., Eckel, F.A., Rife, D.L., Nagarajan, B., Searight, K.: Probabilistic weather prediction with an analog ensemble. Mon. Weather Rev. 141(10), 3498–3516 (2013). https://doi.org/10.1175/mwr-d-12-00281.1

    Article  Google Scholar 

  9. Monache, L.D., Nipen, T., Liu, Y., Roux, G., Stull, R.: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Weather Rev. 139(11), 3554–3570 (2011). https://doi.org/10.1175/2011mwr3653.1

    Article  Google Scholar 

  10. Paparella, F.: Filling gaps in chaotic time series. Phys. Lett. A 346(1–3), 47–53 (2005). https://doi.org/10.1016/j.physleta.2005.07.076

  11. Spence, L., Insel, A., Friedberg, S.: Elementary Linear Algebra: A Matrix Approach. Pearson Education Limited, London (July 2013)

    Google Scholar 

  12. Vannitsem, S., et al.: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Am. Meteorol. Soc. 102(3), E681–E699 (2021). https://doi.org/10.1175/bams-d-19-0308.1

Download references

Acknowledgement

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Balsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balsa, C., Breve, M.M., Rodrigues, C.V., Costa, L.S., Rufino, J. (2022). An Exploratory Study on Hindcasting with Analogue Ensembles of Principal Components. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics