Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Multi-party Privacy-Preserving Record Linkage Based on Blockchain

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13579))

Included in the following conference series:

Abstract

With the explosive growth of data, it is increasingly important to integrate data. Privacy-preserving record linkage (PPRL) refers to linking multiple data sources, matching the same entity to be shared by all parties, without disclosing other data. However, most existing PPRL methods rely on an untrusted party to generate matching records, which may lead to privacy leakage and is difficult to ensure the security of linkage. Therefore, an efficient multi-party PPRL method based on Blockchain is proposed. First of all, the data is encoded into Bloom Filters and then split to reduce the amount of information shared during the comparison step of PPRL. Then, homomorphic encryption technology is adopted to further protect data privacy. To improve the efficiency, we construct optimized binary storage trees, which store the records to calculate the similarity, to reduce the number of comparisons between records. In our method, an auditable protocol deployed on the Blockchain is introduced, to detect malicious attacks by untrusted parties. Experimental results show that the proposed method has high linkage quality and efficiency, with strong security of linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

    Article  Google Scholar 

  2. Lai, P., Yiu, S., Chow, K., Chong, C., Hui, L.: An efficient Bloom filter based solution for multi-party private matching. In: Proceedings of the Conference on SAM (2006)

    Google Scholar 

  3. Sehili, Z., Rohde, F., Franke, M., et al.: Multi-party privacy preserving record linkage in dynamic metric space. BTW 2021 (2021)

    Google Scholar 

  4. Tong, D.N., Shen, D.R., Han, S.M., Nie, T.Z., Kou, Y., Yu, G.: Multi-party strong-privacy-preserving record linkage method. J. Front. Comput. Sci. Technol. 13(03), 394–407 (2019)

    Google Scholar 

  5. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction cryptanalysis of Bloom filters in private record linkage. In: Fischer-, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 226–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_13

  6. Zhao, L., Zhang, E., Qin, L.Y., Li, G.L.: Multi-party privacy preserving k-means clustering scheme based on block-chain. J. Comput. Appl. 1−10. http://kns.cn.ki.net/kcms/dtail/51.1307.TP.20220331.1656.004.html

  7. Schnell, R., Bachteler, T., Reiher, J.: Privacy preserving record linkage using Bloom filters. MIBM 9(1), 41 (2009)

    Google Scholar 

  8. Wang, Y.Y., Huang, D.Y., Xu, D.X.: Record linking protocol based on privacy-preserving in vetor space. Mod. Electr. Technol. 32(14), 138–141 (2009)

    Google Scholar 

  9. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S., et al.: FEDERAL: a framework for distance-aware privacy-preserving record linkage. IEEE Trans. Knowl. Data Eng. 30(2), 292–304 (2018)

    Article  MATH  Google Scholar 

  10. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: Distance-aware encoding of numerical values for privacy-preserving record linkage. In: 2017 33th IEEE International Conference on Data Engineering, pp. 135−138 (2017)

    Google Scholar 

  11. Darham, E.A., Kantarcioglu, M., Xue, Y.: Composite bloom filters for secure record linkage. IEEE Trans. Knowl. Data Eng. 26(12), 2956–2968 (2014)

    Article  Google Scholar 

  12. Han, S.M., Shen, D.R., Nie, T.Z., Kou, Y., Yu, G.: Multi-party privacy-preserving record linkage approach. J. Softw. 28(9), 2281–2292 (2017)

    Google Scholar 

  13. Vatsalan, D., Christen, P.: Multi-party privacy-preserving record linkage using bloom filters. In: 2014 In: Proceedings of ACM Confernece in Information and Knowledge Management, pp. 1795−1798 (2014)

    Google Scholar 

  14. Nóbrega, T., Pires, C., Nascimento, D.C.: Blockchain-based privacy-preserving record linkage enhancing data privacy in an untrusted environment. Inf. Syst. 102, 101826 (2021)

    Google Scholar 

  15. Vatsalan, D., Christen, P., Rahm, E.: Scalable multi-database privacy preserving record linkage using counting bloom filters. In: Proceedings of the 23th International Conference on Information and Knowledge Management, pp. 1795−1798. ACM, New York Press (2014)

    Google Scholar 

  16. Zhu, L.H., et al.: Survey on privacy preserving techniques for blockchain technology. J. Comput. Res. Dev. 54(10), 2170–2186 (2017)

    Google Scholar 

  17. Mao, X., Li, X., Guo, S.: A blockchain architecture design that takes into account privacy protection and regulation. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds.) WISA 2021. LNCS, vol. 12999, pp. 311–319. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87571-8_27

    Chapter  Google Scholar 

  18. Hasan, H.R., Salah, K.: Combating deepfake videos using blockchain and smart contracts. IEEE Access 7, 41596–41606 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, H., Wei, H., Han, S., Shen, D. (2022). Efficient Multi-party Privacy-Preserving Record Linkage Based on Blockchain. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds) Web Information Systems and Applications. WISA 2022. Lecture Notes in Computer Science, vol 13579. Springer, Cham. https://doi.org/10.1007/978-3-031-20309-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20309-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20308-4

  • Online ISBN: 978-3-031-20309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics