Abstract
With the explosive growth of data, it is increasingly important to integrate data. Privacy-preserving record linkage (PPRL) refers to linking multiple data sources, matching the same entity to be shared by all parties, without disclosing other data. However, most existing PPRL methods rely on an untrusted party to generate matching records, which may lead to privacy leakage and is difficult to ensure the security of linkage. Therefore, an efficient multi-party PPRL method based on Blockchain is proposed. First of all, the data is encoded into Bloom Filters and then split to reduce the amount of information shared during the comparison step of PPRL. Then, homomorphic encryption technology is adopted to further protect data privacy. To improve the efficiency, we construct optimized binary storage trees, which store the records to calculate the similarity, to reduce the number of comparisons between records. In our method, an auditable protocol deployed on the Blockchain is introduced, to detect malicious attacks by untrusted parties. Experimental results show that the proposed method has high linkage quality and efficiency, with strong security of linkage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
Lai, P., Yiu, S., Chow, K., Chong, C., Hui, L.: An efficient Bloom filter based solution for multi-party private matching. In: Proceedings of the Conference on SAM (2006)
Sehili, Z., Rohde, F., Franke, M., et al.: Multi-party privacy preserving record linkage in dynamic metric space. BTW 2021 (2021)
Tong, D.N., Shen, D.R., Han, S.M., Nie, T.Z., Kou, Y., Yu, G.: Multi-party strong-privacy-preserving record linkage method. J. Front. Comput. Sci. Technol. 13(03), 394–407 (2019)
Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction cryptanalysis of Bloom filters in private record linkage. In: Fischer-, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 226–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_13
Zhao, L., Zhang, E., Qin, L.Y., Li, G.L.: Multi-party privacy preserving k-means clustering scheme based on block-chain. J. Comput. Appl. 1−10. http://kns.cn.ki.net/kcms/dtail/51.1307.TP.20220331.1656.004.html
Schnell, R., Bachteler, T., Reiher, J.: Privacy preserving record linkage using Bloom filters. MIBM 9(1), 41 (2009)
Wang, Y.Y., Huang, D.Y., Xu, D.X.: Record linking protocol based on privacy-preserving in vetor space. Mod. Electr. Technol. 32(14), 138–141 (2009)
Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S., et al.: FEDERAL: a framework for distance-aware privacy-preserving record linkage. IEEE Trans. Knowl. Data Eng. 30(2), 292–304 (2018)
Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: Distance-aware encoding of numerical values for privacy-preserving record linkage. In: 2017 33th IEEE International Conference on Data Engineering, pp. 135−138 (2017)
Darham, E.A., Kantarcioglu, M., Xue, Y.: Composite bloom filters for secure record linkage. IEEE Trans. Knowl. Data Eng. 26(12), 2956–2968 (2014)
Han, S.M., Shen, D.R., Nie, T.Z., Kou, Y., Yu, G.: Multi-party privacy-preserving record linkage approach. J. Softw. 28(9), 2281–2292 (2017)
Vatsalan, D., Christen, P.: Multi-party privacy-preserving record linkage using bloom filters. In: 2014 In: Proceedings of ACM Confernece in Information and Knowledge Management, pp. 1795−1798 (2014)
Nóbrega, T., Pires, C., Nascimento, D.C.: Blockchain-based privacy-preserving record linkage enhancing data privacy in an untrusted environment. Inf. Syst. 102, 101826 (2021)
Vatsalan, D., Christen, P., Rahm, E.: Scalable multi-database privacy preserving record linkage using counting bloom filters. In: Proceedings of the 23th International Conference on Information and Knowledge Management, pp. 1795−1798. ACM, New York Press (2014)
Zhu, L.H., et al.: Survey on privacy preserving techniques for blockchain technology. J. Comput. Res. Dev. 54(10), 2170–2186 (2017)
Mao, X., Li, X., Guo, S.: A blockchain architecture design that takes into account privacy protection and regulation. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds.) WISA 2021. LNCS, vol. 12999, pp. 311–319. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87571-8_27
Hasan, H.R., Salah, K.: Combating deepfake videos using blockchain and smart contracts. IEEE Access 7, 41596–41606 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yao, H., Wei, H., Han, S., Shen, D. (2022). Efficient Multi-party Privacy-Preserving Record Linkage Based on Blockchain. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds) Web Information Systems and Applications. WISA 2022. Lecture Notes in Computer Science, vol 13579. Springer, Cham. https://doi.org/10.1007/978-3-031-20309-1_57
Download citation
DOI: https://doi.org/10.1007/978-3-031-20309-1_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20308-4
Online ISBN: 978-3-031-20309-1
eBook Packages: Computer ScienceComputer Science (R0)