Abstract
With over a billion sold each year, cameras are not only becoming ubiquitous, but are driving progress in a wide range of domains such as mixed reality, robotics, and more. However, severe concerns regarding the privacy implications of camera-based solutions currently limit the range of environments where cameras can be deployed. The key question we address is: Can cameras be enhanced with a scalable solution to preserve users’ privacy without degrading their machine intelligence capabilities? Our solution is a novel end-to-end adversarial learning pipeline in which a phase mask placed at the aperture plane of a camera is jointly optimized with respect to privacy and utility objectives. We conduct an extensive design space analysis to determine operating points with desirable privacy-utility tradeoffs that are also amenable to sensor fabrication and real-world constraints. We demonstrate the first working prototype that enables passive depth estimation while inhibiting face identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. arXiv preprint arXiv:1812.11941 (2018)
Alvi, M., Zisserman, A., Nellåker, C.: Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 556–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_34
Beach, S., Schulz, R., Downs, J., Matthews, J., Barron, B., Seelman, K.: Disability, age, and informational privacy attitudes in quality of life technology applications: results from a national web survey. ACM Trans. Access. Comput. 2(1), 5 (2009)
Boominathan, V., Adams, J.K., Robinson, J.T., Veeraraghavan, A.: PhlatCam: designed phase-mask based thin lensless camera. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1618–1629 (2020)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74 (2018)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chakrabarti, A.: Learning sensor multiplexing design through back-propagation. In: 30th Conference on Advances in Neural Information Processing Systems, pp. 3081–3089 (2016)
Chang, J., Wetzstein, G.: Deep optics for monocular depth estimation and 3D object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10193–10202 (2019)
Chen, J., Konrad, J., Ishwar, P.: VGAN-based image representation learning for privacy-preserving facial expression recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1570–1579 (2018)
Chhabra, S., Singh, R., Vatsa, M., Gupta, G.: Anonymizing k-facial attributes via adversarial perturbations. arXiv preprint arXiv:1805.09380 (2018)
Dai, J., Wu, J., Saghafi, B., Konrad, J., Ishwar, P.: Towards privacy-preserving activity recognition using extremely low temporal and spatial resolution cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 68–76 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255 (2009)
Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Advances in Neural Information Processing Systems, pp. 658–666 (2016)
Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19 (2008)
Erdélyi, A., Barát, T., Valet, P., Winkler, T., Rinner, B.: Adaptive cartooning for privacy protection in camera networks. In: 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 44–49 (2014)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company Publishers, Englewood (2005)
Haim, H., Elmalem, S., Giryes, R., Bronstein, A.M., Marom, E.: Depth estimation from a single image using deep learned phase coded mask. IEEE Trans. Comput. Imag. 4(3), 298–310 (2018)
He, L., Wang, G., Hu, Z.: Learning depth from single images with deep neural network embedding focal length. IEEE Trans. Image Process. 27(9), 4676–4689 (2018)
Hinojosa, C., Niebles, J.C., Arguello, H.: Learning privacy-preserving optics for human pose estimation. In: Proceedings of the IEEE/CVF International Conference
Hinojosa, C., Niebles, J.C., Arguello, H.: Learning privacy-preserving optics for human pose estimation. In: Proceedings of the IEEE/CVF International Conference
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. Rep. 07–49, University of Massachusetts, Amherst, October 2007
Jeong, Y., Yoo, D.H., Cho, J., Lee, B.: Optic design and image processing considering angle of incidence via end-to-end optimization method. Ultra-High-Defi. Imag Syst. II 10943, 109430U (2019)
Jia, S., Lansdall-Welfare, T., Cristianini, N.: Right for the right reason: training agnostic networks. In: International Symposium on Intelligent Data Analysis, pp. 164–174 (2018)
Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: training deep neural networks with biased data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9012–9020 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, vol. 2 (2017)
Liu, J., Shahroudy, A., Perez, M.L., Wang, G., Duan, L.Y., Chichung, A.K.: Ntu RGB+ D 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)
Metzler, C.A., Ikoma, H., Peng, Y., Wetzstein, G.: Deep optics for single-shot high-dynamic-range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1375–1385 (2020)
Mirjalili, V., Raschka, S., Ross, A.: Gender privacy: an ensemble of semi adversarial networks for confounding arbitrary gender classifiers. In: 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–10 (2018)
Mirjalili, V., Raschka, S., Ross, A.: Flowsan: privacy-enhancaing semi-adversarial networks to confound arbitrary face-based gender classifiers. IEEE Access 7, 99735–99745 (2019)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Nawaz, T., Rinner, B., Ferryman, J.: User-centric, embedded vision-based human monitoring: a concept and a healthcare use case. In: Proceedings of the 10th International Conference on Distributed Smart Camera, pp. 25–30 (2016)
Neustaedter, C.G., Greenberg, S.: Balancing privacy and awareness in home media spaces. In: Citeseer (2003)
Nguyen Canh, T., Nagahara, H.: Deep compressive sensing for visual privacy protection in Flatcam imaging. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 0–0 (2019)
Padilla-López, J.R., Chaaraoui, A.A., Flórez-Revuelta, F.: Visual privacy protection methods: A survey. Expert Syst. Appl. 42(9), 4177–4195 (2015)
Phan, B., Mannan, F., Heide, F.: Adversarial imaging pipelines. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16051–16061 (2021)
Pittaluga, F., Koppal, S., Chakrabarti, A.: Learning privacy preserving encodings through adversarial training. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 791–799 (2019)
Pittaluga, F., Koppal, S.J.: Privacy preserving optics for miniature vision sensors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 314–324 (2015)
Pittaluga, F., Koppal, S.J.: Pre-capture privacy for small vision sensors. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2215–2226 (2016)
Pittaluga, F., Zivkovic, A., Koppal, S.J.: Sensor-level privacy for thermal cameras. In: 2016 IEEE International Conference on Computational Photography (ICCP), pp. 1–12 (2016)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. ArXiv preprint (2021)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell.44, 1623–1637 (2020)
Sattar, H., Krombholz, K., Pons-Moll, G., Fritz, M.: Shape evasion: Preventing body shape inference of multi-stage approaches. arXiv preprint arXiv:1905.11503 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sitzmann, V., et al.: End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37(4), 1–13 (2018)
Sun, Q., Tseng, E., Fu, Q., Heidrich, W., Heide, F.: Learning rank-1 diffractive optics for single-shot high dynamic range imaging. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 1386–1396 (2020)
Tan, J., et al.: Canopic: Pre-digital privacy-enhancing encodings for computer vision. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)
Tseng, E., et al.: Differentiable compound optics and processing pipeline optimization for end-to-end camera design. ACM Trans. Graph. 40(2), 1–19 (2021)
Wang, H., et al.:Off-axis holography with uniform illumination via 3D printed diffractive optical elements. Adv. Opt. Mater.7(12), 1900068 (2019)
Wang, L., Zhang, J., Wang, O., Lin, Z., Lu, H.: SDC-depth: semantic divide-and-conquer network for monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 541–550 (2020)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wang, Z.W., Vineet, V., Pittaluga, F., Sinha, S.N., Cossairt, O., Bing Kang, S.: Privacy-preserving action recognition using coded aperture videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Winkler, T., Erdélyi, A., Rinner, B.: TrustEYE. M4: protecting the sensor-not the camera. In: 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 159–164 (2014)
Wu, Y., Boominathan, V., Chen, H., Sankaranarayanan, A., Veeraraghavan, A.: Phasecam3d-learning phase masks for passive single view depth estimation. In: 2019 IEEE International Conference on Computational Photoagraphy (ICCP), pp. 1–12. IEEE (2019)
Wu, Y., Yang, F., Ling, H.: Privacy-protective-GAN for face de-identification. arXiv preprint arXiv:1806.08906 (2018)
Xia, Z., Sullivan, P., Chakrabarti, A.: Generating and exploiting probabilistic monocular depth estimates. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 65–74 (2020)
Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 311–320 (2018)
Xiao, T., Tsai, Y.H., Sohn, K., Chandraker, M., Yang, M.H.: Adversarial learning of privacy-preserving and task-oriented representations. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)
Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual normal for depth prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5684–5693 (2019)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Proacess. Lett. 23(10), 1499–1503 (2016)
Zhuang, Z., Bradtmiller, B.: Head-and-face anthropometric survey of us respirator users. J. Occup. Environ. Hyg. 2(11), 567–576 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tasneem, Z. et al. (2022). Learning Phase Mask for Privacy-Preserving Passive Depth Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-20071-7_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20070-0
Online ISBN: 978-3-031-20071-7
eBook Packages: Computer ScienceComputer Science (R0)