Abstract
Multi-instance point cloud registration is the problem of estimating multiple poses of source point cloud instances within a target point cloud. Solving this problem is challenging since inlier correspondences of one instance constitute outliers of all the other instances. Existing methods often rely on time-consuming hypothesis sampling or features leveraging spatial consistency, resulting in limited performance. In this paper, we propose PointCLM, a contrastive learning-based framework for mutli-instance point cloud registration. We first utilize contrastive learning to learn well-distributed deep representations for the input putative correspondences. Then based on these representations, we propose a outlier pruning strategy and a clustering strategy to efficiently remove outliers and assign the remaining correspondences to correct instances. Our method outperforms the state-of-the-art methods on both synthetic and real datasets by a large margin. The code will be made publicly available at http://github.com/phdymz/PointCLM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2019)
Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nießner, M.: Scan2cad: learning cad model alignment in rgb-d scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2614–2623 (2019)
Bai, X., et al.: Pointdsc: robust point cloud registration using deep spatial consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15859–15869 (2021)
Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., Tai, C.L.: D3feat: joint learning of dense detection and description of 3D local features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6359–6367 (2020)
Barath, D., Matas, J.: Graph-cut ransac. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6733–6741 (2018)
Barath, D., Matas, J.: Multi-class model fitting by energy minimization and mode-seeking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 221–236 (2018)
Barath, D., Matas, J.: Progressive-x: efficient, anytime, multi-model fitting algorithm. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3780–3788 (2019)
Barath, D., Rozumny, D., Eichhardt, I., Hajder, L., Matas, J.: Progressive-x+: clustering in the consensus space. arXiv preprint arXiv:2103.13875 (2021)
Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)
Bustos, A.P., Chin, T.J.: Guaranteed outlier removal for point cloud registration with correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2868–2882 (2017)
Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
Choy, C., Dong, W., Koltun, V.: Deep global registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2514–2523 (2020)
Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966 (2019)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Fouhey, D.F., Scharstein, A.D.: Multi-model estimation in the presence of outliers. Bachelorsthesis, Middlebury College, Middlebury (2011)
Fu, K., Liu, S., Luo, X., Wang, M.: Robust point cloud registration framework based on deep graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8893–8902 (2021)
Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997)
Heckel, R., Bölcskei, H.: Subspace clustering via thresholding and spectral clustering. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3263–3267. IEEE (2013)
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: Predator: registration of 3D point clouds with low overlap. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4267–4276 (2021)
Huang, X., Mei, G., Zhang, J., Abbas, R.: A comprehensive survey on point cloud registration. arXiv preprint arXiv:2103.02690 (2021)
Kanazawa, Y., Kawakami, H.: Detection of planar regions with uncalibrated stereo using distributions of feature points. In: BMVC, pp. 1–10. Citeseer (2004)
Kluger, F., Brachmann, E., Ackermann, H., Rother, C., Yang, M.Y., Rosenhahn, B.: Consac: robust multi-model fitting by conditional sample consensus. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4634–4643 (2020)
Lee, J., Kim, S., Cho, M., Park, J.: Deep hough voting for robust global registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15994–16003 (2021)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints (2005)
Li, J., Hu, Q., Ai, M.: Gesac: robust graph enhanced sample consensus for point cloud registration. ISPRS J. Photogram. Remote Sens. 167, 363–374 (2020)
Li, Z., Liu, J., Chen, S., Tang, X.: Noise robust spectral clustering. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Lin, J., Morere, O., Chandrasekhar, V., Veillard, A., Goh, H.: Deephash: getting regularization, depth and fine-tuning right. arXiv preprint arXiv:1501.04711 (2015)
Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of j-linkage for multi-model fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3954–3961 (2014)
Magri, L., Fusiello, A.: Robust multiple model fitting with preference analysis and low-rank approximation. In: BMVC, vol. 20, p. 12 (2015)
Magri, L., Fusiello, A.: Multiple model fitting as a set coverage problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3318–3326 (2016)
Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2906–2917 (2021)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pham, T.T., Chin, T.J., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1658–1671 (2014)
Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Rob. 4(1), 1–104 (2015)
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9277–9286 (2019)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)
Stechschulte, J., Ahmed, N., Heckman, C.: Robust low-overlap 3-D point cloud registration for outlier rejection. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7143–7149. IEEE (2019)
Sun, W., Jiang, W., Trulls, E., Tagliasacchi, A., Yi, K.M.: ACNE: attentive context normalization for robust permutation-equivariant learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11286–11295 (2020)
Tang, W., Zou, D.: Multi-instance point cloud registration by efficient correspondence clustering. arXiv preprint arXiv:2111.14582 (2021)
Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_41
Torr, P.H., Nasuto, S.J., Bishop, J.M.: Napsac: high noise, high dimensional robust estimation-it’s in the bag. In: British Machine Vision Conference (BMVC), vol. 2, p. 3 (2002)
Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Wang, H., Liu, Y., Dong, Z., Wang, W., Yang, B.: You only hypothesize once: point cloud registration with rotation-equivariant descriptors. arXiv preprint arXiv:2109.00182 (2021)
Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized hough transform (rht). Pattern Recogn. Lett. 11(5), 331–338 (1990)
Yang, H., Shi, J., Carlone, L.: Teaser: fast and certifiable point cloud registration. IEEE Trans. Rob. 37(2), 314–333 (2020)
Yang, J., Xian, K., Wang, P., Zhang, Y.: A performance evaluation of correspondence grouping methods for 3D rigid data matching. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1859–1874 (2019)
Yang, J., Xian, K., Xiao, Y., Cao, Z.: Performance evaluation of 3D correspondence grouping algorithms. In: 2017 International Conference on 3D Vision (3DV), pp. 467–476. IEEE (2017)
Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2666–2674 (2018)
Zhao, C., Ge, Y., Zhu, F., Zhao, R., Li, H., Salzmann, M.: Progressive correspondence pruning by consensus learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6464–6473 (2021)
Zuliani, M., Kenney, C.S., Manjunath, B.: The multiransac algorithm and its application to detect planar homographies. In: IEEE International Conference on Image Processing 2005, vol. 3, pp. III-153. IEEE (2005)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant 62076070.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yuan, M., Li, Z., Jin, Q., Chen, X., Wang, M. (2022). PointCLM: A Contrastive Learning-based Framework for Multi-instance Point Cloud Registration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-20077-9_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20076-2
Online ISBN: 978-3-031-20077-9
eBook Packages: Computer ScienceComputer Science (R0)