Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Most of existing methods for few-shot object detection follow the fine-tuning paradigm, which potentially assumes that the class-agnostic generalizable knowledge can be learned and transferred implicitly from base classes with abundant samples to novel classes with limited samples via such a two-stage training strategy. However, it is not necessarily true since the object detector can hardly distinguish between class-agnostic knowledge and class-specific knowledge automatically without explicit modeling. In this work we propose to learn three types of class-agnostic commonalities between base and novel classes explicitly: recognition-related semantic commonalities, localization-related semantic commonalities and distribution commonalities. We design a unified distillation framework based on a memory bank, which is able to perform distillation of all three types of commonalities jointly and efficiently. Extensive experiments demonstrate that our method can be readily integrated into most of existing fine-tuning based methods and consistently improve the performance by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., et al.: Few-shot object detection via association and discrimination. In: NeurIPS (2021)

    Google Scholar 

  2. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: WACV (2018)

    Google Scholar 

  3. Chen, H., Wang, Y., Wang, G., Qiao, Y.: Lstd: a low-shot transfer detector for object detection. In: AAAI (2018)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Fan, Q., Zhuo, W., Tang, C.K., Tai, Y.W.: Few-shot object detection with attention-rpn and multi-relation detector. In: CVPR (2020)

    Google Scholar 

  6. Fan, Z., Ma, Y., Li, Z., Sun, J.: Generalized few-shot object detection without forgetting. In: CVPR (2021)

    Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  8. Girshick, R.: Fast r-cnn. In: ICCV (2015)

    Google Scholar 

  9. Hahn, S., Choi, H.: Self-knowledge distillation in natural language processing. arXiv preprint arXiv:1908.01851 (2019)

  10. Han, G., He, Y., Huang, S., Ma, J., Chang, S.F.: Query adaptive few-shot object detection with heterogeneous graph convolutional networks. In: ICCV (2021)

    Google Scholar 

  11. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: ICCV (2017)

    Google Scholar 

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

  15. Hu, H., Bai, S., Li, A., Cui, J., Wang, L.: Dense relation distillation with context-aware aggregation for few-shot object detection. In: CVPR (2021)

    Google Scholar 

  16. Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection via feature reweighting. In: ICCV (2019)

    Google Scholar 

  17. Karlinsky, L., et al.: Repmet: representative-based metric learning for classification and few-shot object detection. In: CVPR (2019)

    Google Scholar 

  18. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation with progressive refinement of targets. In: ICCV (2021)

    Google Scholar 

  19. Komodakis, N., Zagoruyko, S.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)

    Google Scholar 

  20. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)

    Google Scholar 

  21. Li, A., Li, Z.: Transformation invariant few-shot object detection. In: CVPR (2021)

    Google Scholar 

  22. Li, B., Yang, B., Liu, C., Liu, F., Ji, R., Ye, Q.: Beyond max-margin: class margin equilibrium for few-shot object detection. In: CVPR (2021)

    Google Scholar 

  23. Li, Y., et al.: Few-shot object detection via classification refinement and distractor retreatment. In: CVPR (2021)

    Google Scholar 

  24. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017)

  25. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  26. Qiao, L., Zhao, Y., Li, Z., Qiu, X., Wu, J., Zhang, C.: Defrcn: decoupled faster r-cnn for few-shot object detection. In: ICCV (2021)

    Google Scholar 

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  28. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  29. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  30. Salakhutdinov, R., Tenenbaum, J., Torralba, A.: One-shot learning with a hierarchical nonparametric bayesian model. In: ICML Workshop (2012)

    Google Scholar 

  31. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  32. Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: Fsce: few-shot object detection via contrastive proposal encoding. In: CVPR (2021)

    Google Scholar 

  33. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  34. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  35. Wang, X., Huang, T., Gonzalez, J., Darrell, T., Yu, F.: Frustratingly simple few-shot object detection. In: ICML (2020)

    Google Scholar 

  36. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR (2018)

    Google Scholar 

  37. Wang, Y.X., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In: ICCV (2019)

    Google Scholar 

  38. Wu, A., Han, Y., Zhu, L., Yang, Y.: Universal-prototype enhancing for few-shot object detection. In: ICCV (2021)

    Google Scholar 

  39. Wu, A., Zhao, S., Deng, C., Liu, W.: Generalized and discriminative few-shot object detection via svd-dictionary enhancement. In: NeurIPS (2021)

    Google Scholar 

  40. Wu, J., Liu, S., Huang, D., Wang, Y.: Multi-scale positive sample refinement for few-shot object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 456–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_27

    Chapter  Google Scholar 

  41. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  42. Xiao, Y., Marlet, R.: Few-shot object detection and viewpoint estimation for objects in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 192–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_12

    Chapter  Google Scholar 

  43. Xu, T.B., Liu, C.L.: Data-distortion guided self-distillation for deep neural networks. In: AAAI (2019)

    Google Scholar 

  44. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta r-cnn: towards general solver for instance-level low-shot learning. In: ICCV (2019)

    Google Scholar 

  45. Yang, S., Liu, L., Xu, M.: Free lunch for few-shot learning: distribution calibration. In: ICLR (2020)

    Google Scholar 

  46. Yang, Y., Wei, F., Shi, M., Li, G.: Restoring negative information in few-shot object detection. In: NeurIPS (2020)

    Google Scholar 

  47. Yun, S., Park, J., Lee, K., Shin, J.: Regularizing class-wise predictions via self-knowledge distillation. In: CVPR (2020)

    Google Scholar 

  48. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: CVPR (2020)

    Google Scholar 

  49. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: ICCV (2019)

    Google Scholar 

  50. Zhang, L., Zhou, S., Guan, J., Zhang, J.: Accurate few-shot object detection with support-query mutual guidance and hybrid loss. In: CVPR (2021)

    Google Scholar 

  51. Zhang, W., Wang, Y.X.: Hallucination improves few-shot object detection. In: CVPR (2021)

    Google Scholar 

  52. Zhu, C., Chen, F., Ahmed, U., Shen, Z., Savvides, M.: Semantic relation reasoning for shot-stable few-shot object detection. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSFC fund (U2013210, 62006060, 62176077), in part by the Guangdong Basic and Applied Basic Research Foundation under Grant (2019Bl515120055, 2021A1515012528, 2022A1515010306), in part by the Shenzhen Key Technical Project under Grant 2020N046, in part by the Shenzhen Fundamental Research Fund under Grant (JCYJ20210324132210025), in part by the Shenzhen Stable Support Plan Fund for Universities (GXWD20201230155427003-20200824125730001, GXWD202012 30155427003-20200824164357001), in part by CAAI-Huawei MindSpore Open Fund(CAAIXSJLJJ-2021-003B), in part by the Medical Biometrics Perception and Analysis Engineering Laboratory, Shenzhen, China, and in part by the Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (2022B1212010005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Pei or Guangming Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1230 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Pei, W., Mei, D., Chen, F., Tian, J., Lu, G. (2022). Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics