Abstract
Most of existing methods for few-shot object detection follow the fine-tuning paradigm, which potentially assumes that the class-agnostic generalizable knowledge can be learned and transferred implicitly from base classes with abundant samples to novel classes with limited samples via such a two-stage training strategy. However, it is not necessarily true since the object detector can hardly distinguish between class-agnostic knowledge and class-specific knowledge automatically without explicit modeling. In this work we propose to learn three types of class-agnostic commonalities between base and novel classes explicitly: recognition-related semantic commonalities, localization-related semantic commonalities and distribution commonalities. We design a unified distillation framework based on a memory bank, which is able to perform distillation of all three types of commonalities jointly and efficiently. Extensive experiments demonstrate that our method can be readily integrated into most of existing fine-tuning based methods and consistently improve the performance by a large margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Y., et al.: Few-shot object detection via association and discrimination. In: NeurIPS (2021)
Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: WACV (2018)
Chen, H., Wang, Y., Wang, G., Qiao, Y.: Lstd: a low-shot transfer detector for object detection. In: AAAI (2018)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)
Fan, Q., Zhuo, W., Tang, C.K., Tai, Y.W.: Few-shot object detection with attention-rpn and multi-relation detector. In: CVPR (2020)
Fan, Z., Ma, Y., Li, Z., Sun, J.: Generalized few-shot object detection without forgetting. In: CVPR (2021)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)
Girshick, R.: Fast r-cnn. In: ICCV (2015)
Hahn, S., Choi, H.: Self-knowledge distillation in natural language processing. arXiv preprint arXiv:1908.01851 (2019)
Han, G., He, Y., Huang, S., Ma, J., Chang, S.F.: Query adaptive few-shot object detection with heterogeneous graph convolutional networks. In: ICCV (2021)
Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: ICCV (2017)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)
Hu, H., Bai, S., Li, A., Cui, J., Wang, L.: Dense relation distillation with context-aware aggregation for few-shot object detection. In: CVPR (2021)
Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection via feature reweighting. In: ICCV (2019)
Karlinsky, L., et al.: Repmet: representative-based metric learning for classification and few-shot object detection. In: CVPR (2019)
Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation with progressive refinement of targets. In: ICCV (2021)
Komodakis, N., Zagoruyko, S.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)
Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)
Li, A., Li, Z.: Transformation invariant few-shot object detection. In: CVPR (2021)
Li, B., Yang, B., Liu, C., Liu, F., Ji, R., Ye, Q.: Beyond max-margin: class margin equilibrium for few-shot object detection. In: CVPR (2021)
Li, Y., et al.: Few-shot object detection via classification refinement and distractor retreatment. In: CVPR (2021)
Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Qiao, L., Zhao, Y., Li, Z., Qiu, X., Wu, J., Zhang, C.: Defrcn: decoupled faster r-cnn for few-shot object detection. In: ICCV (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: NeurIPS (2015)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Salakhutdinov, R., Tenenbaum, J., Torralba, A.: One-shot learning with a hierarchical nonparametric bayesian model. In: ICML Workshop (2012)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)
Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: Fsce: few-shot object detection via contrastive proposal encoding. In: CVPR (2021)
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR (2018)
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)
Wang, X., Huang, T., Gonzalez, J., Darrell, T., Yu, F.: Frustratingly simple few-shot object detection. In: ICML (2020)
Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR (2018)
Wang, Y.X., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In: ICCV (2019)
Wu, A., Han, Y., Zhu, L., Yang, Y.: Universal-prototype enhancing for few-shot object detection. In: ICCV (2021)
Wu, A., Zhao, S., Deng, C., Liu, W.: Generalized and discriminative few-shot object detection via svd-dictionary enhancement. In: NeurIPS (2021)
Wu, J., Liu, S., Huang, D., Wang, Y.: Multi-scale positive sample refinement for few-shot object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 456–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_27
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)
Xiao, Y., Marlet, R.: Few-shot object detection and viewpoint estimation for objects in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 192–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_12
Xu, T.B., Liu, C.L.: Data-distortion guided self-distillation for deep neural networks. In: AAAI (2019)
Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta r-cnn: towards general solver for instance-level low-shot learning. In: ICCV (2019)
Yang, S., Liu, L., Xu, M.: Free lunch for few-shot learning: distribution calibration. In: ICLR (2020)
Yang, Y., Wei, F., Shi, M., Li, G.: Restoring negative information in few-shot object detection. In: NeurIPS (2020)
Yun, S., Park, J., Lee, K., Shin, J.: Regularizing class-wise predictions via self-knowledge distillation. In: CVPR (2020)
Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: CVPR (2020)
Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: ICCV (2019)
Zhang, L., Zhou, S., Guan, J., Zhang, J.: Accurate few-shot object detection with support-query mutual guidance and hybrid loss. In: CVPR (2021)
Zhang, W., Wang, Y.X.: Hallucination improves few-shot object detection. In: CVPR (2021)
Zhu, C., Chen, F., Ahmed, U., Shen, Z., Savvides, M.: Semantic relation reasoning for shot-stable few-shot object detection. In: CVPR (2021)
Acknowledgements
This work was supported in part by the NSFC fund (U2013210, 62006060, 62176077), in part by the Guangdong Basic and Applied Basic Research Foundation under Grant (2019Bl515120055, 2021A1515012528, 2022A1515010306), in part by the Shenzhen Key Technical Project under Grant 2020N046, in part by the Shenzhen Fundamental Research Fund under Grant (JCYJ20210324132210025), in part by the Shenzhen Stable Support Plan Fund for Universities (GXWD20201230155427003-20200824125730001, GXWD202012 30155427003-20200824164357001), in part by CAAI-Huawei MindSpore Open Fund(CAAIXSJLJJ-2021-003B), in part by the Medical Biometrics Perception and Analysis Engineering Laboratory, Shenzhen, China, and in part by the Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (2022B1212010005).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, S., Pei, W., Mei, D., Chen, F., Tian, J., Lu, G. (2022). Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-20077-9_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20076-2
Online ISBN: 978-3-031-20077-9
eBook Packages: Computer ScienceComputer Science (R0)