Abstract
Building robust and generic object detection frameworks requires scaling to larger label spaces and bigger training datasets. However, it is prohibitively costly to acquire annotations for thousands of categories at a large scale. We propose a novel method that leverages the rich semantics available in recent vision and language models to localize and classify objects in unlabeled images, effectively generating pseudo labels for object detection. Starting with a generic and class-agnostic region proposal mechanism, we use vision and language models to categorize each region of an image into any object category that is required for downstream tasks. We demonstrate the value of the generated pseudo labels in two specific tasks, open-vocabulary detection, where a model needs to generalize to unseen object categories, and semi-supervised object detection, where additional unlabeled images can be used to improve the model. Our empirical evaluation shows the effectiveness of the pseudo labels in both tasks, where we outperform competitive baselines and achieve a novel state-of-the-art for open-vocabulary object detection. Our code is available at https://github.com/xiaofeng94/VL-PLM.
S. Zhao1 and Z. Zhang1—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, A., et al.: VQA: visual question answering. In: ICCV (2015)
Agrawal, H., et al.: nocaps: novel object captioning at scale. In: ICCV (2019)
Anderson, P., et al.: Vision-and-Language navigation: interpreting visually-grounded navigation instructions in real environments. In: CVPR (2018)
Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 397–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_24
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: CVPR (2018)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server (2015)
Chen, Y.C., et al.: UNITER: UNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7
Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied question answering. In: CVPR (2018)
Dong, B., Huang, Z., Guo, Y., Wang, Q., Niu, Z., Zuo, W.: Boosting weakly supervised object detection via learning bounding box adjusters. In: ICCV., pp. 2876–2885 (2021)
Everingham, M., Eslami, S., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)
Fang, H., et al.: From captions to visual concepts and back. In: CVPR (2015)
Fukui, A., et al..: Multimodal compact bilinear pooling for visual question answering and visual grounding. In: EMNLP (2016)
Gao, M., Xing, C., Niebles, J.C., Li, J., Xu, R., Liu, W., Xiong, C.: Towards open vocabulary object detection without human-provided bounding boxes. In: ECCV 2022 (2021)
Ghiasi, G., et al.: : Simple copy-paste is a strong data augmentation method for instance segmentation. In: CVPR, pp. 2918–2928 (2021)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. In: ICLR (2022)
Gupta, A., Dollár, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
Hu, R., Singh, A.: UniT: multimodal Multitask Learning with a unified transformer. In: ICCV (2021)
Hudson, D.A., Manning, C.D.: Learning by abstraction: the neural state machine. In: NeurIPS (2019)
Huynh, D., Kuen, J., Lin, Z., Gu, J., Elhamifar, E.: Open-vocabulary instance segmentation via robust cross-modal pseudo-labeling (2021)
Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation. In: CVPR (2018)
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML (D2021)
Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: MDETR - modulated detection for end-to-end multi-modal understanding. In: ICCV (2021)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: CVPR (2015)
Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: ReferItGame: referring to objects in photographs of natural scenes. In: EMNLP (2014)
Kuznetsova, A., et al.: The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis, 128, 1956–1981 (2020)
Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. In: ICLR (2022)
Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before fuse: vision and language representation learning with momentum distillation. In: NeurIPS (2021)
Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019)
Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for Vision-and-Language Tasks. In: NeurIPS (2019)
Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A., Murphy, K.: Generation and Comprehension of Unambiguous Object Descriptions. In: CVPR (2016)
Peng, G., et al.: Dynamic fusion with Intra- and inter- modality attention flow for visual question answering. In: CVPR (2019)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Rahman, S., Khan, S., Barnes, N.: Improved visual-semantic alignment for zero-shot object detection. In: AAAI, pp. 11932–11939 (2020)
Rao, Y., et al.: Denseclip: Language-guided dense prediction with context-aware prompting. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with Region Proposal Networks. In: NeurIPS (2015)
Shao, S., et al.: Objects365: a large-scale. high-quality dataset for object detection. In : 2019 IEEE/CVF International Conference on Computer Vision (2019)
Shi, H., Hayat, M., Wu, Y., Cai, J.: ProposalCLIP: unsupervised open-category object proposal generation via exploiting clip cues. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Siméoni, O., et al.: Localizing objects with self-supervised transformers and no labels. In: BMVC (2021)
Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. In: arXiv:2005.04757 (2020)
Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: A joint model for video and language representation learning. In: ICCV (2019)
Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)
Wang, L., Li, Y., Lazebnik, S.: Learning Deep Structure-Preserving Image-Text Embeddings. In: CVPR (2016)
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)
Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In: ICCV, pp. 3060–3069 (2021)
Xu, M., et al.: A simple baseline for zero-shot semantic segmentation with pre-trained vision-language model (2021)
Yu, F., et al.: Unsupervised domain adaptation for object detection via cross-domain semi-supervised learning. In: WACV (2022)
Yu, L., et al.: MAttNet: modular attention network for referring expression comprehension. In: CVPR (2018)
Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5
Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: CVPR (2021)
Zhang, P., et al.: VinVL: revisiting visual representations in vision-language models. In: CVPR (2021)
Zhao, X., Schulter, S., Sharma, G., Tsai, Y.-H., Chandraker, M., Wu, Y.: Object detection with a unified label space from multiple datasets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 178–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_11
Zhong, Y., et al.: RegionCLIP: Region-based language-image pretraining. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Zhong, Y., Wang, J., Peng, J., Zhang, L.: Boosting weakly supervised object detection with progressive knowledge transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 615–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_37
Zhou, C., Loy, C.C., Dai, B.: DenseCLIP: extract free dense labels from clip. In: ECCV 2022 (2021)
Zhou, Q., Yu, C., Wang, Z., Qian, Q., Li, H.: Instant-teaching: an end-to-end semi-supervised object detection framework. In: CVPR (2021)
Zhu, P., Wang, H., Saligrama, V.: Don’t even look once: synthesizing features for zero-shot detection. In: CVPR, pp. 11693–11702 (2020)
Acknowledgments
This research has been partially funded by research grants to D. Metaxas from NEC Labs America through NSF IUCRC CARTA-1747778, NSF: 1951890, 2003874, 1703883, 1763523 and ARO MURI SCAN.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, S. et al. (2022). Exploiting Unlabeled Data with Vision and Language Models for Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-20077-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20076-2
Online ISBN: 978-3-031-20077-9
eBook Packages: Computer ScienceComputer Science (R0)