Abstract
Object pose transformation is a challenging task. Yet, most existing pose transformation networks only focus on synthesizing humans. These methods either rely on the keypoints information or rely on the manual annotations of the paired target pose images for training. However, collecting such paired data is laboring and the cue of keypoints is inapplicable to general objects. In this paper, we address a problem of novel general object pose transformation from unpaired data. Given a source image of an object that provides appearance information and a desired pose image as reference in the absence of paired examples, we produce a depiction of the object in that specified pose, retaining the appearance of both the object and background. Specifically, to preserve the source information, we propose an adversarial network with \({\textbf {S}}\)patial-\({\textbf {S}}\)tructural (SS) block and \({\textbf {T}}\)exture-\({\textbf {S}}\)tyle-\({\textbf {C}}\)olor (TSC) block after the correlation matching module that facilitates the output to be semantically corresponding to the target pose image while contextually related to the source image. In addition, we can extend our network to complete multi-object and cross-category pose transformation. Extensive experiments demonstrate the effectiveness of our method which can create more realistic images when compared to those of recent approaches in terms of image quality. Moreover, we show the practicality of our method for several applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, J., Cho, S., Kwak, S.: Weakly supervised learning of instance segmentation with inter-pixel relations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2209–2218 (2019)
Balakrishnan, G., Zhao, A., Dalca, A.V., Durand, F., Guttag, J.: Synthesizing images of humans in unseen poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8340–8348 (2018)
Bansal, A., Sheikh, Y., Ramanan, D.: Shapes and context: in-the-wild image synthesis & manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2317–2326 (2019)
Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_10
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: periodic implicit generative adversarial networks for 3d-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5799–5809 (2021)
Dosovitskiy, A., et al: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)
Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal Visual Object Classes Challenge: a Retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2014). https://doi.org/10.1007/s11263-014-0733-5
Güler, R.A., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint. arXiv:1706.08500 (2017)
Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2019)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Ji, D., Kwon, J., McFarland, M., Savarese, S.: Deep view morphing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2155–2163 (2017)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: International Conference on Machine Learning, pp. 1857–1865. PMLR (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 (2014)
Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. arXiv preprint. arXiv:1503.03167 (2015)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10551–10560 (2019)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)
Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping gan: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5904–5913 (2019)
Liu, W., Piao, Z., Tu, Z., Luo, W., Ma, L., Gao, S.: Liquid warping GAN with attention: a unified framework for human image synthesis. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5114–5132 (2021)
Liu, X., Liu, W., Mei, T., Ma, H.: Provid: progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans. Multimedia 20(3), 645–658 (2018)
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096–1104 (2016)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graphics (TOG) 34(6), 1–16 (2015)
Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disentangling of object shape and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10955–10964 (2019)
Lv, K., Sheng, H., Xiong, Z., Li, W., Zheng, L.: Pose-based view synthesis for vehicles: a perspective aware method. IEEE Trans. Image Process. 29, 5163–5174 (2020)
Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T., Van Gool, L.: Exemplar guided unsupervised image-to-image translation with semantic consistency. arXiv preprint. arXiv:1805.11145 (2018)
Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. arXiv preprint. arXiv:1705.09368 (2017)
Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., Fritz, M.: Disentangled person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 99–108 (2018)
Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 800–815. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_47
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint. arXiv:1411.1784 (2014)
Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4500–4509 (2018)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)
Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: structure guided image inpainting using edge prediction. In: The IEEE International Conference on Computer Vision (ICCV) Workshops (2019)
Neverova, N., Alp Güler, R., Kokkinos, I.: Dense pose transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 128–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_8
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Nguyen, D.T., et al.: Deepusps: deep robust unsupervised saliency prediction with self-supervision. arXiv preprint. arXiv:1909.13055 (2019)
Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: unsupervised learning of 3d representations from natural images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7588–7597 (2019)
Park, E., Yang, J., Yumer, E., Ceylan, D., Berg, A.C.: Transformation-grounded image generation network for novel 3d view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3500–3509 (2017)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Rematas, K., Nguyen, C.H., Ritschel, T., Fritz, M., Tuytelaars, T.: Novel views of objects from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1576–1590 (2016)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Saito, K., Saenko, K., Liu, M.Y.: Coco-funit: few-shot unsupervised image translation with a content conditioned style encoder. arXiv preprint. arXiv:2007.07431 2 (2020)
Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: generative radiance fields for 3d-aware image synthesis. arXiv preprint. arXiv:2007.02442 (2020)
Shen, T., Lin, G., Shen, C., Reid, I.: Bootstrapping the performance of webly supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1363–1371 (2018)
Si, C., Wang, W., Wang, L., Tan, T.: Multistage adversarial losses for pose-based human image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 118–126 (2018)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. Adv. Neural. Inf. Process. Syst. 32, 7137–7147 (2019)
Siarohin, A., Sangineto, E., Lathuiliere, S., Sebe, N.: Deformable gans for pose-based human image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3408–3416 (2018)
Su, Y., Lin, G., Hao, Y., Cao, Y., Wang, W., Wu, Q.: Self-supervised object localization with joint graph partition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2289–2297 (2022)
Su, Y., Lin, G., Sun, R., Hao, Y., Wu, Q.: Modeling the uncertainty for self-supervised 3d skeleton action representation learning. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 769–778 (2021)
Su, Y., Lin, G., Wu, Q.: Self-supervised 3d skeleton action representation learning with motion consistency and continuity. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13328–13338 (2021)
Su, Y., Lin, G., Zhu, J., Wu, Q.: Human interaction learning on 3d skeleton point clouds for video violence recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 74–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_5
Su, Y., Sun, R., Lin, G., Wu, Q.: Context decoupling augmentation for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7004–7014 (2021)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint. arXiv:1607.08022 (2016)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical reports CNS-TR-2011-001, California Institute of Technology (2011)
Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., Yang, M.: Toward characteristic-preserving image-based virtual try-on network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 607–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_36
Wang, M., et al.: Example-guided style-consistent image synthesis from semantic labeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1495–1504 (2019)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)
Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12275–12284 (2020)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wu, B., Duan, H., Liu, Z., Sun, G.: Srpgan: perceptual generative adversarial network for single image super resolution. arXiv preprint. arXiv:1712.05927 (2017)
Wu, W., Cao, K., Li, C., Qian, C., Loy, C.C.: Transgaga: geometry-aware unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8012–8021 (2019)
Yang, F., Lin, G.: Ct-net: Complementary transfering network for garment transfer with arbitrary geometric changes. arXiv preprint. arXiv:2105.05497 (2021)
Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–7859 (2020)
Zhang, P., Zhang, B., Chen, D., Yuan, L., Wen, F.: Cross-domain correspondence learning for exemplar-based image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5143–5153 (2020)
Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention transfer for person image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2347–2356 (2019)
Acknowledgment
This work was supported by National Natural Science Foundation of China (NSFC) 61876208, Key-Area Research and Development Program of Guangdong Province 2018B010108002, and the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-RP-2018-003), the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP20220-0007) and Tier 1 (RG95/20).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Su, Y., Lin, G., Sun, R., Wu, Q. (2022). General Object Pose Transformation Network from Unpaired Data. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)