Abstract
This paper proposes a simple baseline framework for video-based 2D/3D human pose estimation that can achieve \(10\times \) efficiency improvement over existing works without any performance degradation, named DeciWatch . Unlike current solutions that estimate each frame in a video, DeciWatch introduces a simple yet effective sample-denoise-recover framework that only watches sparsely sampled frames, taking advantage of the continuity of human motions and the lightweight pose representation. Specifically, DeciWatch uniformly samples less than \(10\%\) video frames for detailed estimation, denoises the estimated 2D/3D poses with an efficient Transformer architecture, and then accurately recovers the rest of the frames using another Transformer-based network. Comprehensive experimental results on three video-based human pose estimation, body mesh recovery tasks and efficient labeling in videos with four datasets validate the efficiency and effectiveness of DeciWatch. Code is available at https://github.com/cure-lab/DeciWatch.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Due to the limit of pages, we present data description, comprehensive results of different sampling ratios, the effect of hyper-parameters, generalization ability, qualitative results, and failure cases analyses in the supplementary material.
References
Burke, M., Lasenby, J.: Estimating missing marker positions using low dimensional kalman smoothing. J. Biomech. 49(9), 1854–1858 (2016)
Cai, Y., et al.: A unified 3d human motion synthesis model via conditional variational auto-encoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11645–11655 (2021)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)
Choi, S., Choi, S., Kim, C.: Mobilehumanpose: toward real-time 3d human pose estimation in mobile devices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2328–2338 (2021)
Chu, H., et al.: Part-aware measurement for robust multi-view multi-human 3d pose estimation and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1472–1481 (2021)
Dai, H., Shi, H., Liu, W., Wang, L., Liu, Y., Mei, T.: Fasterpose: a faster simple baseline for human pose estimation. arXiv preprint arXiv:2107.03215 (2021)
Desmarais, Y., Mottet, D., Slangen, P., Montesinos, P.: A review of 3d human pose estimation algorithms for markerless motion capture. Comput. Vis. Image Underst. 212, 103275 (2021)
Duan, Y., et al.: Single-shot motion completion with transformer. arXiv preprint arXiv:2103.00776 (2021)
Fan, Z., Liu, J., Wang, Y.: Adaptive computationally efficient network for monocular 3D hand pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 127–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_8
Fan, Z., Liu, J., Wang, Y.: Motion adaptive pose estimation from compressed videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11719–11728 (2021)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354 (2015)
Gløersen, Ø., Federolf, P.: Predicting missing marker trajectories in human motion data using marker intercorrelations. PLoS One, 11(3), e0152616 (2016)
Gundavarapu, N.B., Srivastava, D., Mitra, R., Sharma, A., Jain, A.: Structured aleatoric uncertainty in human pose estimation. In: CVPR Workshops, vol. 2, p. 2 (2019)
Harvey, F.G., Pal, C.: Recurrent transition networks for character locomotion. In: SIGGRAPH Asia 2018 Technical Briefs, pp. 1–4 (2018)
Harvey, F.G., Yurick, M., Nowrouzezahrai, D., Pal, C.: Robust motion in-betweening. ACM Trans. Graph. (TOG) 39(4), 60–1 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hernandez, A., Gall, J., Moreno-Noguer, F.: Human motion prediction via spatio-temporal inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7134–7143 (2019)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Ho, H.I., Chen, X., Song, J., Hilliges, O.: Render in-between: Motion guided video synthesis for action interpolation. arXiv preprint arXiv:2111.01029 (2021)
Howarth, S.J., Callaghan, J.P.: Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of human movement. Comput. Meth. Biomech. Biomed. Eng. 13(6), 847–855 (2010)
Hwang, D.H., Kim, S., Monet, N., Koike, H., Bae, S.: Lightweight 3d human pose estimation network training using teacher-student learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 479–488 (2020)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6 m: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3192–3199 (2013)
Ji, L., Liu, R., Zhou, D., Zhang, Q., Wei, X.: Missing data recovery for human mocap data based on a-lstm and ls constraint. In: 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), pp. 729–734. IEEE (2020)
Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3d human model fitting towards in-the-wild 3d human pose estimation. In: 2021 International Conference on 3D Vision (3DV), pp. 42–52. IEEE (2021)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Kaufmann, M., Aksan, E., Song, J., Pece, F., Ziegler, R., Hilliges, O.: Convolutional autoencoders for human motion infilling. In: 2020 International Conference on 3D Vision (3DV), pp. 918–927. IEEE (2020)
Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: Pare: part attention regressor for 3d human body estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11127–11137 (2021)
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)
Kucherenko, T., Beskow, J., Kjellström, H.: A neural network approach to missing marker reconstruction in human motion capture. arXiv preprint arXiv:1803.02665 (2018)
Lai, R.Y., Yuen, P.C., Lee, K.K.: Motion capture data completion and denoising by singular value thresholding. In: Eurographics (Short Papers), pp. 45–48 (2011)
Li, J., et al.: Human pose regression with residual log-likelihood estimation. In: ICCV (2021)
Li, R., Yang, S., Ross, D.A., Kanazawa, A.: Ai choreographer: music conditioned 3d dance generation with aist++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13401–13412 (2021)
Li, Z., Ye, J., Song, M., Huang, Y., Pan, Z.: Online knowledge distillation for efficient pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11740–11750 (2021)
Liu, W., Bao, Q., Sun, Y., Mei, T.: Recent advances in monocular 2d and 3d human pose estimation: A deep learning perspective. arXiv preprint arXiv:2104.11536 (2021)
Luo, Y., et al.: Lstm pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5207–5215 (2018)
von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3d human pose in the wild using imus and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)
Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Nie, X., Li, Y., Luo, L., Zhang, N., Feng, J.: Dynamic kernel distillation for efficient pose estimation in videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6942–6950 (2019)
Osokin, D.: Real-time 2d multi-person pose estimation on cpu: lightweight openpose. arXiv preprint arXiv:1811.12004 (2018)
Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3d human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)
Reda, H.E.A., Benaoumeur, I., Kamel, B., Zoubir, A.F.: Mocap systems and hand movement reconstruction using cubic spline. In: 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 1–5. IEEE (2018)
Shuai, H., Wu, L., Liu, Q.: Adaptively multi-view and temporal fusing transformer for 3d human pose estimation. arXiv preprint arXiv:2110.05092 (2021)
Skurowski, P., Pawlyta, M.: Gap reconstruction in optical motion capture sequences using neural networks. Sensors 21(18), 6115 (2021)
Sovrasov, V.: Flops counter for convolutional networks in pytorch framework (2022). https://github.com/sovrasov/flops-counter.pytorch, original-date: 2018–08-17T09:54:59Z
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)
Wu, Q., Boulanger, P.: Real-time estimation of missing markers for reconstruction of human motion. In: 2011 XIII Symposium on Virtual Reality, pp. 161–168. IEEE (2011)
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481 (2018)
Xu, J., et al.: Exploring versatile prior for human motion via motion frequency guidance. In: 2021 International Conference on 3D Vision (3DV), pp. 606–616. IEEE (2021)
Yan, S., Li, Z., Xiong, Y., Yan, H., Lin, D.: Convolutional sequence generation for skeleton-based action synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4394–4402 (2019)
Yu, C., et al.: Lite-hrnet: a lightweight high-resolution network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10440–10450 (2021)
Yuan, Y., Iqbal, U., Molchanov, P., Kitani, K., Kautz, J.: Glamr: global occlusion-aware human mesh recovery with dynamic cameras. arXiv preprint arXiv:2112.01524 (2021)
Zeng, A., Sun, X., Huang, F., Liu, M., Xu, Q., Lin, S.: SRNet: improving generalization in 3D human pose estimation with a split-and-recombine approach. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_30
Zeng, A., Sun, X., Yang, L., Zhao, N., Liu, M., Xu, Q.: Learning skeletal graph neural networks for hard 3d pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2021)
Zeng, A., Yang, L., Ju, X., Li, J., Wang, J., Xu, Q.: Smoothnet: a plug-and-play network for refining human poses in videos. arXiv preprint arXiv:2112.13715 (2021)
Zhang, Y., Wang, Y., Camps, O., Sznaier, M.: Key frame proposal network for efficient pose estimation in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 609–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_36
Zhang, Z., Tang, J., Wu, G.: Simple and lightweight human pose estimation. arXiv preprint arXiv:1911.10346 (2019)
Zhao, L., Wang, N., Gong, C., Yang, J., Gao, X.: Estimating human pose efficiently by parallel pyramid networks. IEEE Trans. Image Process. 30, 6785–6800 (2021)
Zheng, C., Mendieta, M., Wang, P., Lu, A., Chen, C.: A lightweight graph transformer network for human mesh reconstruction from 2d human pose. arXiv preprint arXiv:2111.12696 (2021)
Zheng, C., et al.: Deep learning-based human pose estimation: a survey. arXiv preprint arXiv:2012.13392 (2020)
Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3d human pose estimation with spatial and temporal transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11656–11665 (2021)
Acknowledgement
This work is supported in part by Shenzhen-Hong Kong-Macau Science and Technology Program (Category C) of Shenzhen Science Technology and Innovation Commission under Grant No. SGDX2020110309500101, and Shanghai AI Laboratory.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zeng, A. et al. (2022). DeciWatch: A Simple Baseline for \(10\times \) Efficient 2D and 3D Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-20065-6_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20064-9
Online ISBN: 978-3-031-20065-6
eBook Packages: Computer ScienceComputer Science (R0)