Abstract
Recent studies have shown that Deep Neural Networks (DNNs) are vulnerable to the backdoor attacks, which leads to malicious behaviors of DNNs when specific triggers are attached to the input images. It was further demonstrated that the infected DNNs possess a collection of channels, which are more sensitive to the backdoor triggers compared with normal channels. Pruning these channels was then shown to be effective in mitigating the backdoor behaviors. To locate those channels, it is natural to consider their Lipschitzness, which measures their sensitivity against worst-case perturbations on the inputs. In this work, we introduce a novel concept called Channel Lipschitz Constant (CLC), which is defined as the Lipschitz constant of the mapping from the input images to the output of each channel. Then we provide empirical evidences to show the strong correlation between an Upper bound of the CLC (UCLC) and the trigger-activated change on the channel activation. Since UCLC can be directly calculated from the weight matrices, we can detect the potential backdoor channels in a data-free manner, and do simple pruning on the infected DNN to repair the model. The proposed Channel Lipschitzness based Pruning (CLP) method is super fast, simple, data-free and robust to the choice of the pruning threshold. Extensive experiments are conducted to evaluate the efficiency and effectiveness of CLP, which achieves state-of-the-art results among the mainstream defense methods even without any data. Source codes are available at https://github.com/rkteddy/channel-Lipschitzness-based-pruning.
R. Zheng and R. Tang—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Refers to the infinite norm.
- 2.
The labels remain unchanged in clean label attacks [39].
References
Armijo, L.: Minimization of functions having lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)
Biggio, B., Nelson, B., Laskov, P.: Support vector machines under adversarial label noise. In: Asian Conference on Machine Learning, pp. 97–112. PMLR (2011)
Borgnia, E., et al.: Strong data augmentation sanitizes poisoning and backdoor attacks without an accuracy tradeoff. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3855–3859. IEEE (2021)
Chen, H., Fu, C., Zhao, J., Koushanfar, F.: Proflip: targeted trojan attack with progressive bit flips. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7718–7727 (2021)
Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)
Chen, Y., et al.: USCL: pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Doan, B.G., Abbasnejad, E., Ranasinghe, D.C.: Februus: input purification defense against trojan attacks on deep neural network systems. In: Annual Computer Security Applications Conference, pp. 897–912 (2020)
Du, M., Jia, R., Song, D.: Robust anomaly detection and backdoor attack detection via differential privacy. In: International Conference on Learning Representations (2019)
Gao, Y., et al.: Strip: a defence against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security Applications Conference, pp. 113–125 (2019)
Gong, C., Ren, T., Ye, M., Liu, Q.: Maxup: a simple way to improve generalization of neural network training. arXiv preprint arXiv:2002.09024 (2020)
Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: evaluating backdooring attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019)
Hayase, J., Kong, W., Somani, R., Oh, S.: Spectre: defending against backdoor attacks using robust statistics. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, 18–24 July 2021, vol. 139, pp. 4129–4139. PMLR (2021). https://proceedings.mlr.press/v139/hayase21a.html
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, K., Li, Y., Wu, B., Qin, Z., Ren, K.: Backdoor defense via decoupling the training process. In: International Conference on Learning Representations (2021)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)
Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Neural attention distillation: erasing backdoor triggers from deep neural networks. In: International Conference on Learning Representations (2020)
Li, Y., Wu, B., Jiang, Y., Li, Z., Xia, S.T.: Backdoor learning: a survey. arXiv preprint arXiv:2007.08745 (2020)
Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16463–16472 (2021)
Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_13
Liu, L., Feng, G., Beautemps, D., Zhang, X.P.: Re-synchronization using the hand preceding model for multi-modal fusion in automatic continuous cued speech recognition. IEEE Trans. Multimedia 23, 292–305 (2020)
Liu, Y., et al.: Trojaning attack on neural networks. In: 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, 18–21 February 2018. The Internet Society (2018). http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack on deep neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 182–199. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_11
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018)
Nguyen, A., Tran, A.: Wanet-imperceptible warping-based backdoor attack. arXiv preprint arXiv:2102.10369 (2021)
Nguyen, T.A., Tran, A.: Input-aware dynamic backdoor attack. Adv. Neural Inf. Process. Syst. 33, 3454–3464 (2020)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., dÁlché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Rakin, A.S., He, Z., Fan, D.: Tbt: targeted neural network attack with bit trojan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13198–13207 (2020)
Rosenfeld, E., Winston, E., Ravikumar, P., Kolter, Z.: Certified robustness to label-flipping attacks via randomized smoothing. In: International Conference on Machine Learning, pp. 8230–8241. PMLR (2020)
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tramèr, F., Boneh, D., Kurakin, A., Goodfellow, I., Papernot, N., McDaniel, P.: Ensemble adversarial training: attacks and defenses. In: 6th International Conference on Learning Representations, ICLR 2018-Conference Track Proceedings (2018)
Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 8011–8021 (2018)
Turner, A., Tsipras, D., Madry, A.: Label-consistent backdoor attacks. arXiv preprint arXiv:1912.02771 (2019)
Wang, B., et al.: Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE (2019)
Wu, D., Wang, Y.: Adversarial neuron pruning purifies backdoored deep models. Adv. Neural Inf. Process. Syst. 34 (2021)
Xu, K., Liu, S., Chen, P.Y., Zhao, P., Lin, X.: Defending against backdoor attack on deep neural networks. arXiv preprint arXiv:2002.12162 (2020)
Xue, M., He, C., Wang, J., Liu, W.: One-to-n & n-to-one: two advanced backdoor attacks against deep learning models. IEEE Trans. Depend. Secure Comput. (2020)
Yoshida, K., Fujino, T.: Disabling backdoor and identifying poison data by using knowledge distillation in backdoor attacks on deep neural networks. In: Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, pp. 117–127 (2020)
Yoshida, Y., Miyato, T.: Spectral norm regularization for improving the generalizability of deep learning. arXiv preprint arXiv:1705.10941 (2017)
Zhao, P., Chen, P.Y., Das, P., Ramamurthy, K.N., Lin, X.: Bridging mode connectivity in loss landscapes and adversarial robustness. In: International Conference on Learning Representations (2019)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China (No. 62101351), the GuangDong Basic and Applied Basic Research Foundation (No. 2020A1515110376), and the Shenzhen Outstanding Scientific and Technological Innovation Talents PhD Startup Project (No. RCBS20210609104447108).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, R., Tang, R., Li, J., Liu, L. (2022). Data-Free Backdoor Removal Based on Channel Lipschitzness. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-20065-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20064-9
Online ISBN: 978-3-031-20065-6
eBook Packages: Computer ScienceComputer Science (R0)