Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cross-Domain Few-Shot Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13690))

Included in the following conference series:

Abstract

Few-shot semantic segmentation aims at learning to segment a novel object class with only a few annotated examples. Most existing methods consider a setting where base classes are sampled from the same domain as the novel classes. However, in many applications, collecting sufficient training data for meta-learning is infeasible or impossible. In this paper, we extend few-shot semantic segmentation to a new task, called Cross-Domain Few-Shot Semantic Segmentation (CD-FSS), which aims to generalize the meta-knowledge from domains with sufficient training labels to low-resource domains. Moreover, a new benchmark for the CD-FSS task is established and characterized by a task difficulty measurement. We evaluate both representative few-shot segmentation methods and transfer learning based methods on the proposed benchmark and find that current few-shot segmentation methods fail to address CD-FSS. To tackle the challenging CD-FSS problem, we propose a novel Pyramid-Anchor-Transformation based few-shot segmentation network (PATNet), in which domain-specific features are transformed into domain-agnostic ones for downstream segmentation modules to fast adapt to unseen domains. Our model outperforms the state-of-the-art few-shot segmentation method in CD-FSS by 8.49% and 10.61% average accuracies in 1-shot and 5-shot, respectively. Code and datasets are available at https://github.com/slei109/PATNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, T., et al.: Cross-domain few-shot learning by representation fusion. arXiv preprint arXiv:2010.06498 (2020)

  2. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  3. Boudiaf, M., Kervadec, H., Masud, Z., et al.: Few-shot segmentation without meta-learning: a good transductive inference is all you need? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13979–13988 (2021)

    Google Scholar 

  4. Candemir, S., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2), 577–590 (2013)

    Article  Google Scholar 

  5. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  7. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

  8. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1992–2001 (2017)

    Google Scholar 

  9. Chen, Y., Li, W., Van Gool, L.: Road: Reality oriented adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7892–7901 (2018)

    Google Scholar 

  10. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  11. Demir, I., et al.: DeepGlobe 2018: a challenge to parse the earth through satellite images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  12. Du, L., et al.: SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 982–991 (2019)

    Google Scholar 

  13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  14. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400 (2017)

  15. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)

  16. Guo, Y., Codella, N.C., Karlinsky, L., Smith, J.R., Rosing, T., Feris, R.: A new benchmark for evaluation of cross-domain few-shot learning. arXiv preprint arXiv:1912.07200 (2019)

  17. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: 2011 International Conference on Computer Vision, pp. 991–998. IEEE (2011)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6629–6640 (2017)

    Google Scholar 

  20. Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

  21. Jaeger, S., et al.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2013)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Li, X., Wei, T., Chen, Y.P., Tai, Y.W., Tang, C.K.: FSS-1000: a 1000-class dataset for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2869–2878 (2020)

    Google Scholar 

  24. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. arXiv preprint arXiv:1805.10002 (2018)

  25. Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. arXiv preprint arXiv:2007.06309 (2020)

  26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., pp. 3431–3440 (2015)

    Google Scholar 

  27. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6941–6952 (2021)

    Google Scholar 

  28. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  29. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  31. Sakaridis, C., Dai, D., Gool, L.V.: Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7374–7383 (2019)

    Google Scholar 

  32. Seo, J., Park, Y.H., Yoon, S.W., Moon, J.: Task-adaptive feature transformer for few-shot segmentation. arXiv preprint arXiv:2010.11437 (2020)

  33. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)

  34. Siam, M., Oreshkin, B.N., Jagersand, M.: AMP: adaptive masked proxies for few-shot segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5249–5258 (2019)

    Google Scholar 

  35. Simon, C., Koniusz, P., Nock, R., Harandi, M.: Adaptive subspaces for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4136–4145 (2020)

    Google Scholar 

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  37. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  38. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44, 1050–1065 (2020)

    Article  Google Scholar 

  39. Triantafillou, E., et al.: Meta-dataset: a dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096 (2019)

  40. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  41. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative patch representations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1456–1465 (2019)

    Google Scholar 

  42. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)

    Article  Google Scholar 

  43. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. arXiv preprint arXiv:2001.08735 (2020)

  44. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  45. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  46. Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. arXiv preprint arXiv:2008.03898 (2020)

  47. Yoon, S.W., Seo, J., Moon, J.: TapNet: neural network augmented with task-adaptive projection for few-shot learning. In: International Conference on Machine Learning, pp. 7115–7123. PMLR (2019)

    Google Scholar 

  48. Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9587–9595 (2019)

    Google Scholar 

  49. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5217–5226 (2019)

    Google Scholar 

  50. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: SG-One: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50(9), 3855–3865 (2020)

    Article  Google Scholar 

  51. Zhang, Y., David, P., Foroosh, H., Gong, B.: A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 1823–1841 (2019)

    Article  Google Scholar 

  52. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  53. Zhu, X., Zhou, H., Yang, C., Shi, J., Lin, D.: Penalizing top performers: conservative loss for semantic segmentation adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 587–603. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_35

    Chapter  Google Scholar 

  54. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Du .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18445 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, S., Zhang, X., He, J., Chen, F., Du, B., Lu, CT. (2022). Cross-Domain Few-Shot Semantic Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics