Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Few-Shot Part Segmentation Using Coarse Supervision

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13690))

Included in the following conference series:

Abstract

A significant bottleneck in training deep networks for part segmentation is the cost of obtaining detailed annotations. We propose a framework to exploit coarse labels such as figure-ground masks and keypoint locations that are readily available for some categories to improve part segmentation models. A key challenge is that these annotations were collected for different tasks and with different labeling styles and cannot be readily mapped to the part labels. To this end, we propose to jointly learn the dependencies between labeling styles and the part segmentation model, allowing us to utilize supervision from diverse labels. To evaluate our approach we develop a benchmark on the Caltech-UCSD birds and OID Aircraft dataset. Our approach outperforms baselines based on multi-task learning, semi-supervised learning, and competitive methods relying on loss functions manually designed to exploit coarse supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(q(y) \ge 0\) and \(p(y, y_1, y_2, \ldots , y_n)> 0 \Rightarrow q(y) > 0\).

References

  1. Ahn, J., Cho, S., Kwak, S.: Weakly supervised learning of instance segmentation with inter-pixel relations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2209–2218 (2019)

    Google Scholar 

  2. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: detecting and representing objects using holistic models and body parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1971–1978 (2014)

    Google Scholar 

  3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  4. Cheng, B., Parkhi, O., Kirillov, A.: Pointly-supervised instance segmentation. arXiv preprint arXiv:2104.06404 (2021)

  5. Cho, J.H., Mall, U., Bala, K., Hariharan, B.: PiCIE: unsupervised semantic segmentation using invariance and equivariance in clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16794–16804 (2021)

    Google Scholar 

  6. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  8. Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task groupings for multi-task learning. Adv. Neural Inf. Process. Syst. 34, 27503–27516 (2021)

    Google Scholar 

  9. Guo, P., Lee, C.Y., Ulbricht, D.: Learning to branch for multi-task learning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 3854–3863. PMLR, 13–18 July 2020. https://proceedings.mlr.press/v119/guo20e.html

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. Heuer, F., Mantowsky, S., Bukhari, S., Schneider, G.: Multitask-CenterNet (MCN): efficient and diverse multitask learning using an anchor free approach. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 997–1005 (2021)

    Google Scholar 

  12. Hsu, C.C., Hsu, K.J., Tsai, C.C., Lin, Y.Y., Chuang, Y.Y.: Weakly supervised instance segmentation using the bounding box tightness prior. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  13. Hung, W.C., Jampani, V., Liu, S., Molchanov, P., Yang, M.H., Kautz, J.: SCOPS: self-supervised co-part segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 869–878 (2019)

    Google Scholar 

  14. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)

    Google Scholar 

  15. Kocabas, M., Karagoz, S., Akbas, E.: MultiPoseNet: fast multi-person pose estimation using pose residual network. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  16. Laradji, I.H., Rostamzadeh, N., Pinheiro, P.O., Vazquez, D., Schmidt, M.: Proposal-based instance segmentation with point supervision. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2126–2130. IEEE (2020)

    Google Scholar 

  17. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  18. Liu, W., Wu, Z., Ding, H., Liu, F., Lin, J., Lin, G.: Few-shot segmentation with global and local contrastive learning. arXiv preprint arXiv:2108.05293 (2021)

  19. Naha, S., Xiao, Q., Banik, P., Reza, M., Crandall, D.J., et al.: Part segmentation of unseen objects using keypoint guidance. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1742–1750 (2021)

    Google Scholar 

  20. O Pinheiro, P.O., Almahairi, A., Benmalek, R., Golemo, F., Courville, A.C.: Unsupervised learning of dense visual representations. Adv. Neural. Inf. Process. Syst. 33, 4489–4500 (2020)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28 (2015)

    Google Scholar 

  22. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut’’ interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  23. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  24. Saha, O., Cheng, Z., Maji, S.: GANORCON: are generative models useful for few-shot segmentation? In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9991–10000 (2022)

    Google Scholar 

  25. Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9120–9132. PMLR, 13–18 July 2020. https://proceedings.mlr.press/v119/standley20a.html

  26. Tian, Z., Shen, C., Wang, X., Chen, H.: BoxInst: high-performance instance segmentation with box annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5443–5452 (2021)

    Google Scholar 

  27. Tripathi, S., Collins, M., Brown, M., Belongie, S.: Pose2Instance: harnessing keypoints for person instance segmentation. arXiv preprint arXiv:1704.01152 (2017)

  28. Tritrong, N., Rewatbowornwong, P., Suwajanakorn, S.: Repurposing gans for one-shot semantic part segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4475–4485 (2021)

    Google Scholar 

  29. Van Horn, G., et al.: Building a bird recognition app and large scale dataset with citizen scientists: the fine print in fine-grained dataset collection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 595–604 (2015). https://doi.org/10.1109/CVPR.2015.7298658

  30. Vedaldi, A., et al.: Understanding objects in detail with fine-grained attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  31. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  32. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12275–12284 (2020)

    Google Scholar 

  33. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688. Citeseer (2011)

    Google Scholar 

  34. Yang, Y., Bilen, H., Zou, Q., Cheung, W.Y., Ji, X.: Unsupervised foreground-background segmentation with equivariant layered GANs. arXiv preprint arXiv:2104.00483 (2021)

  35. Zhang, Y., et al.: DatasetGAN: efficient labeled data factory with minimal human effort. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10145–10155 (2021)

    Google Scholar 

  36. Zhou, Y., Zhu, Y., Ye, Q., Qiu, Q., Jiao, J.: Weakly supervised instance segmentation using class peak response. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3800 (2018)

    Google Scholar 

  37. Zhu, Y., Zhou, Y., Xu, H., Ye, Q., Doermann, D., Jiao, J.: Learning instance activation maps for weakly supervised instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3116–3125 (2019)

    Google Scholar 

  38. Zou, Y., Zhang, Z., Zhang, H., Li, C.L., Bian, X., Huang, J.B., Pfister, T.: PSEUDOSEG: designing pseudo labels for semantic segmentation. arXiv preprint arXiv:2010.09713 (2020)

Download references

Acknowledgements

The research is supported in part by NSF grants # 1749833 and #1908669. Our experiments were performed on the University of Massachusetts GPU cluster funded by the Mass. Technology Collaborative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oindrila Saha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1435 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, O., Cheng, Z., Maji, S. (2022). Improving Few-Shot Part Segmentation Using Coarse Supervision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics