Abstract
Image BERT pre-training with masked image modeling (MIM) becomes a popular practice to cope with self-supervised representation learning. A seminal work, BEiT, casts MIM as a classification task with a visual vocabulary, tokenizing the continuous visual signals into discrete vision tokens using a pre-learned dVAE. Despite a feasible solution, the improper discretization hinders further improvements of image pre-training. Since image discretization has no ground-truth answers, we believe that the masked patch should not be assigned with a unique token id even if a better “tokenizer” can be obtained. In this work, we introduce an improved BERT-style image pre-training method, namely mc-BEiT, which performs MIM proxy tasks towards eased and refined multi-choice training objectives. Specifically, the multi-choice supervision for the masked image patches is formed by the soft probability vectors of the discrete token ids, which are predicted by the off-the-shelf image “tokenizer” and further refined by high-level inter-patch perceptions resorting to the observation that similar patches should share their choices. Extensive experiments on classification, segmentation, and detection tasks demonstrate the superiority of our method, e.g., the pre-trained ViT-B achieves 84.1% top-1 fine-tuning accuracy on ImageNet-1K classification, 49.2% \(\text {AP}^{b}\) and 44.0% \(\text {AP}^{m}\) of object detection and instance segmentation on COCO, 50.8% mIOU on ADE20K semantic segmentation, outperforming the competitive counterparts. The code is available at https://github.com/lixiaotong97/mc-BEiT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bao, H., Dong, L., Piao, S., Wei, F.: BEit: BERT pre-training of image transformers. In: ICLR (2022)
Bardes, A., Ponce, J., LeCun, Y.: VICReg: variance-invariance-covariance regularization for self-supervised learning. In: ICLR (2022)
Brown, T., et al.: Language models are few-shot learners. In: NIPS, vol. 33, pp. 1877–1901 (2020)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NIPS, pp. 9912–9924 (2020)
Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)
Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. In: NIPS, pp. 22243–22255 (2020)
Chen, X., et al.: Context autoencoder for self-supervised representation learning. arXiv preprint arXiv:2202.03026 (2022)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)
Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: ICCV, pp. 9640–9649 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: ACL, pp. 4171–4186 (2019)
Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV, pp. 1422–1430 (2015)
Dong, X., et al.: Peco: perceptual codebook for bert pre-training of vision transformers. arXiv preprint arXiv:2111.12710 (2021)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: ICLR (2021)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR, pp. 12873–12883 (2021)
Fang, Y., Yang, S., Wang, S., Ge, Y., Shan, Y., Wang, X.: Unleashing vanilla vision transformer with masked image modeling for object detection. arXiv preprint arXiv:2204.02964 (2022)
Ge, Y., et al.: Miles: visual bert pre-training with injected language semantics for video-text retrieval. arXiv preprint arXiv:2204.12408 (2022)
Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NIPS, pp. 21271–21284 (2020)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV, pp. 2980–2988 (2017)
Henaff, O.: Data-efficient image recognition with contrastive predictive coding. In: ICML, pp. 4182–4192 (2020)
Krasin, I., et al.: Openimages: a public dataset for large-scale multi-label and multi-class image classification (2017)
Lample, G., Conneau, A.: Cross-lingual language model pretraining. In: NIPS (2019)
Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: CVPR, pp. 6874–6883 (2017)
Li, Y., Xie, S., Chen, X., Dollar, P., He, K., Girshick, R.: Benchmarking detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, X., et al.: Self-supervised learning: generative or contrastive. TKDE (2021)
Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5
Oord, A.V.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)
Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML, pp. 8821–8831 (2021)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers and distillation through attention. In: ICML, pp. 10347–10357 (2021)
Wei, C., Fan, H., Xie, S., Wu, C.Y., Yuille, A., Feichtenhofer, C.: Masked feature prediction for self-supervised visual pre-training. arXiv preprint arXiv:2112.09133 (2021)
Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 432–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_26
Xie, Z., et al.: Simmim: a simple framework for masked image modeling. arXiv preprint arXiv:2111.09886 (2021)
Yi, K., et al.: Masked image modeling with denoising contrast. arXiv preprint arXiv:2205.09616 (2022)
Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: ICML, pp. 12310–12320 (2021)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR, pp. 5122–5130 (2017)
Zhou, J., et al.: Image BERT pre-training with online tokenizer. In: ICLR (2022)
Acknowlegement
This work was supported by the National Natural Science Foundation of China under Grant 62088102, and in part by the PKU-NTU Joint Research Institute (JRI) sponsored by a donation from the Ng Teng Fong Charitable Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, X., Ge, Y., Yi, K., Hu, Z., Shan, Y., Duan, LY. (2022). mc-BEiT: Multi-choice Discretization for Image BERT Pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-20056-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20055-7
Online ISBN: 978-3-031-20056-4
eBook Packages: Computer ScienceComputer Science (R0)