Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Perturbation-Constrained Adversarial Attack for Evaluating the Robustness of Optical Flow

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Recent optical flow methods are almost exclusively judged in terms of accuracy, while their robustness is often neglected. Although adversarial attacks offer a useful tool to perform such an analysis, current attacks on optical flow methods focus on real-world attacking scenarios rather than a worst case robustness assessment. Hence, in this work, we propose a novel adversarial attack—the Perturbation-Constrained Flow Attack (PCFA)—that emphasizes destructivity over applicability as a real-world attack. PCFA is a global attack that optimizes adversarial perturbations to shift the predicted flow towards a specified target flow, while keeping the \(L_2\) norm of the perturbation below a chosen bound. Our experiments demonstrate PCFA’s applicability in white- and black-box settings, and show it finds stronger adversarial samples than previous attacks. Based on these strong samples, we provide the first joint ranking of optical flow methods considering both prediction quality and adversarial robustness, which reveals state-of-the-art methods to be particularly vulnerable. Code is available at https://github.com/cv-stuttgart/PCFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.robustvision.net/.

  2. 2.

    FGSM [15] and I-FGSM [20] limit the perturbation size below \(\varepsilon _\infty \) by performing only so many steps of a fixed step size \(\tau \), that exceeding the norm bound is impossible. To this end, the number of steps is fixed to \(N=\lfloor \frac{\varepsilon _\infty }{\tau } \rfloor \), which comes down to a one-shot optimization. Additionally, this “early stopping” reduces the attack strength as it prevents optimizing in the vicinity of the bound.

  3. 3.

    Ranjan et al. [30] generate a pseudo ground truth for their attack with static patches by prescribing a zero-flow at the patch locations.

References

  1. Anand, A.P., Gokul, H., Srinivasan, H., Vijay, P., Vijayaraghavan, V.: Adversarial patch defense for optical flow networks in video action recognition. In: Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1289–1296 (2020)

    Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  3. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12, 43–77 (1994)

    Article  Google Scholar 

  4. Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 231–236 (1993)

    Google Scholar 

  5. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. In: arXiv preprint. arXiv:1712 (2018)

  6. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 25–36 (2004)

    Google Scholar 

  7. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  8. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  9. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 611–625 (2012)

    Google Scholar 

  10. Capito, L., Ozguner, U., Redmill, K.: Optical flow based visual potential field for autonomous driving. In: IEEE Intelligent Vehicles Symposium (IV), pp. 885–891 (2020)

    Google Scholar 

  11. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Proceedings of the IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

    Google Scholar 

  12. Deng, Y., Karam, L.J.: Universal adversarial attack via enhanced projected gradient descent. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1241–1245 (2020)

    Google Scholar 

  13. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014)

  16. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  17. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Janai, J., Güney, F., Wulff, J., Black, M., Geiger, A.: Slow Flow: exploiting high-speed cameras for accurate and diverse optical flow reference data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1406–1416 (2017)

    Google Scholar 

  19. Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden motions with global motion aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9772–9781 (2021)

    Google Scholar 

  20. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv: 6110.1236 (2017)

  21. Li, R., Tan, R.T., Cheong, L.-F.: Robust optical flow in rainy scenes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 299–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_18

    Chapter  Google Scholar 

  22. Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2010)

    Article  Google Scholar 

  23. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. In: Proceedings of the ISPRS Workshop on Image Sequence Analysis (ISA) (2015)

    Google Scholar 

  24. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  25. Niklaus, S.: A reimplementation of SPyNet using PyTorch (2018). https://github.com/sniklaus/pytorch-spynet

  26. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)

    Article  MathSciNet  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

  28. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), pp. 8024–8035 (2019)

    Google Scholar 

  29. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  30. Ranjan, A., Janai, J., Geiger, A., Black, M.J.: Attacking optical flow. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  31. Reda, F., Pottorff, R., Barker, J., Catanzaro, B.: flownet2-pytorch: Pytorch implementation of FlowNet 2.0: evolution of optical flow estimation with deep networks (2017). https://github.com/NVIDIA/flownet2-pytorch

  32. Schrodi, S., Saikia, T., Brox, T.: Towards understanding adversarial robustness of optical flow networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8916–8924 (2022)

    Google Scholar 

  33. Shafahi, A., Najibi, M., Xu, Z., Dickerson, J., Davis, L.S., Goldstein, T.: Universal adversarial training. Proc. AAAI Conf. Artif. Intell. 34(04), 5636–5643 (2020)

    Google Scholar 

  34. Stegmaier, T., Oellingrath, E., Himmel, M., Fraas, S.: Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology. Nat. Res. Sci. Rep. 10(1), 1–14 (2020)

    Google Scholar 

  35. Stein, F.: Efficient computation of optical flow using the census transform. In: Proceedings of the German Conference on Pattern Recognition (DAGM), pp. 79–86 (2004)

    Google Scholar 

  36. Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2499 (2010)

    Google Scholar 

  37. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  38. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  39. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 402–419 (2020)

    Google Scholar 

  40. Tehrani, A., Mirzae, M., Rivaz, H.: Semi-supervised training of optical flow convolutional neural networks in ultrasound elastography. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 504–513 (2020)

    Google Scholar 

  41. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  42. Ullah, A., Muhammad, K., Del Ser, J., Baik, S.W., de Albuquerque, V.H.C.: Activity recognition using temporal optical flow convolutional features and multilayer LSTM. IEEE Trans. Ind. Electr. 66(12), 9692–9702 (2019)

    Article  Google Scholar 

  43. van de Weijer, J., Gevers, T.: Robust optical flow from photometric invariants. In: Proceedings of th IEEE International Conference on Image Processing (ICIP), vol. 3, pp. 1835–1838 (2004)

    Google Scholar 

  44. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks: analysis and efficient estimation. In: Proc. Conference on Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  45. Wang, H., Cai, P., Fan, R., Sun, Y., Liu, M.: End-to-end interactive prediction and planning with optical flow distillation for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR-W), pp. 2229–2238 (2021)

    Google Scholar 

  46. Wang, L., Guo, Y., Liu, L., Lin, Z., Deng, X., An, W.: Deep video super-resolution using HR optical flow estimation. IEEE Trans. Image Process. 29, 4323–4336 (2020)

    Article  Google Scholar 

  47. Wong, A., Mundhra, M., Soatto, S.: Stereopagnosia: fooling stereo networks with adversarial perturbations. Proc AAAI Conf. Artif. Intell. 35(4), 2879–2888 (2021)

    Google Scholar 

  48. Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a review. Int. J. AOF Automat. Comput. 17(2), 151–178 (2020)

    Article  Google Scholar 

  49. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. In: Proceedings of Conference on Neural Information Processing Systems (NeurIPS), pp. 794–805 (2019)

    Google Scholar 

  50. Yin, Z., Darrell, T., Yu, F.: Hierarchical discrete distribution decomposition for match density estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6044–6053 (2019)

    Google Scholar 

  51. Yu, H., Chen, X., Shi, H., Chen, T., Huang, T.S., Sun, S.: Motion pyramid networks for accurate and efficient cardiac motion estimation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 436–446 (2020)

    Google Scholar 

  52. Zhang, F., Woodford, O., Prisacariu, V., Torr, P.: Separable flow: Learning motion cost volumes for optical flow estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10807–10817 (2021)

    Google Scholar 

  53. Zhang, T., Zhang, H., Li, Y., Nakamura, Y., Zhang, L.: Flowfusion: dynamic dense RGB-D SLAM based on optical flow. In: Proc, IEEE International Conference on Robotics and Automation (ICRA), pp. 7322–7328 (2020)

    Google Scholar 

Download references

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 251654672 – TRR 161 (B04). The International Max Planck Research School for Intelligent Systems supports J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Schmalfuss .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13210 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmalfuss, J., Scholze, P., Bruhn, A. (2022). A Perturbation-Constrained Adversarial Attack for Evaluating the Robustness of Optical Flow. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics