Abstract
Denoising Autoencoder Genetic Programming (DAE-GP) is a model-based evolutionary algorithm that uses denoising autoencoder long short-term memory networks as probabilistic model to replace the standard recombination and mutation operators of genetic programming (GP). In this paper, we use the DAE-GP to solve a set of nine standard real-world symbolic regression tasks. We compare the prediction quality of the DAE-GP to standard GP, geometric semantic GP (GSGP), and the gene-pool optimal mixing evolutionary algorithm for GP (GOMEA-GP), and find that the DAE-GP shows similar prediction quality using a much lower number of fitness evaluations than GSGP or GOMEA-GP. In addition, the DAE-GP consistently finds small solutions. The best candidate solutions of the DAE-GP are 69% smaller (median number of nodes) than the best candidate solutions found by standard GP. An analysis of the bias of the selection and variation step for both the DAE-GP and standard GP gives insight into why differences in solution size exist: the strong increase in solution size for standard GP is a result of both selection and variation bias. The results highlight that learning and sampling from a probabilistic model is a promising alternative to classic GP variation operators where the DAE-GP is able to generate small solutions for real-world symbolic regression tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For a detailed description on DAE-LSTM, refer to Wittenberg [31].
References
Brooks, T.F., Pope, D.S., Marcolini, M.A.: Airfoil self-noise and prediction, vol. 1218. In: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division (1989)
Chollet, F.: keras (2015). https://github.com/fchollet/keras
Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagńe, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)
Gerritsma, J., Onnink, R., Versluis, A.: Geometry, resistance and stability of the delft systematic yacht hull series. Int. Shipbuild. Prog. 28(328), 276–297 (1981)
Harrison, D., Jr., Rubinfeld, D.L.: Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 5(1), 81–102 (1978)
Hasegawa, Y., Iba, H.: Estimation of Bayesian network for program generation. In: Proceedings of the Third Asian-Pacific Workshop on Genetic Programming, pp. 35–46. Hanoi, Vietnam (2006)
Hasegawa, Y., Iba, H.: Estimation of distribution algorithm based on probabilistic grammar with latent annotations. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1043–1050. IEEE (2007). https://doi.org/10.1109/CEC.2007.4424585
Hasegawa, Y., Iba, H.: A Bayesian network approach to program generation. IEEE Trans. Evol. Comput. 12(6), 750–764 (2008). https://doi.org/10.1109/tevc.2008.915999
Kim, K., Shan, Y., Nguyen, X.H., McKay, R.I.: Probabilistic model building in genetic programming: a critical review. Genet. Program Evolvable Mach. 15(2), 115–167 (2014). https://doi.org/10.1007/s10710-013-9205-x
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations. San Diego, CA, USA (2015)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, London (1992)
La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO 2016), pp. 741–748. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2908812.2908898
Martins, J.F.B.S., Oliveira, L.O.V.B., Miranda, L.F., Casadei, F., Pappa, G.L.: Solving the exponential growth of symbolic regression trees in geometric semantic genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 1151–1158. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3205455.3205593
de Melo, V.V., Vargas, D.V., Banzhaf, W.: Batch tournament selection for genetic programming: the quality of lexicase, the speed of tournament. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 994–1002. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3321707.3321793
Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3
Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013). https://doi.org/10.1109/TEVC.2012.2195319
Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? A large benchmark study of recent symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 1183–1190. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3205455.3205539
Probst, M., Rothlauf, F.: Harmless overfitting: using denoising autoencoders in estimation of distribution algorithms. J. Mach. Learn. Res. 21(78), 1–31 (2020). http://jmlr.org/papers/v21/16-543.html
Ratle, A., Sebag, M.: Avoiding the bloat with stochastic grammar-based genetic programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 255–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46033-0_21
Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-540-72962-4
Salustowicz, R., Schmidhuber, J.: Probabilistic incremental program evolution. Evol. Comput. 5(2), 123–141 (1997). https://doi.org/10.1162/evco.1997.5.2.123
Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII, pp. 129–146. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7747-2_8
Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), pp. 843–852. ACM, Lille, France (2015). https://doi.org/10.5555/3045118.3045209
Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2009)
Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)
Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning (ICML 2008), pp. 1096–1103. ACM, Helsinki, Finland (2008). https://doi.org/10.1145/1390156.1390294
Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Improving model-based genetic programming for symbolic regression of small expressions. Evol. Comput. 29(2), 211–237 (2021). https://doi.org/10.1162/evco_a_00278
Wittenberg, D.: Using denoising autoencoder genetic programming to control exploration and exploitation in search. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming (EuroGP 2022). LNCS, vol. 13223, pp. 102–117. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02056-8_7
Wittenberg, D., Rothlauf, F.: Denoising autoencoder genetic programming for real-world symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2022), pp. 612–614. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3520304.3528921
Wittenberg, D., Rothlauf, F., Schweim, D.: DAE-GP: denoising autoencoder LSTM networks as probabilistic models in estimation of distribution genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 1037–1045. ACM, New York, NY, USA (2020). https://doi.org/10.1145/3377930.3390180
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with Bayesian network. In: IEEE Congress on Evolutionary Computation (CEC 2014), pp. 739–746. IEEE, Beijing, China (2014)
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with dependence learning and Bayesian network classifier. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 959–966. ACM, Vancouver, Canada (2014). https://doi.org/10.1145/2576768.2598256
Yanai, K., Iba, H.: Estimation of distribution programming based on Bayesian network. In: IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1618–1625. IEEE, Canberra, Australia (2003). https://doi.org/10.1109/CEC.2003.1299866
Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)
Acknowledgements
We thank our group in Mainz for previous work and insightful discussions on this topic. Parts of this research were conducted using the supercomputer Mogon offered by Johannes Gutenberg University Mainz (hpc.uni-mainz.de), which is a member of the AHRP (Alliance for High Performance Computing in Rhineland Palatinate, www.ahrp.info) and the Gauss Alliance e.V. The authors gratefully acknowledge the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wittenberg, D., Rothlauf, F. (2023). Small Solutions for Real-World Symbolic Regression Using Denoising Autoencoder Genetic Programming. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-29573-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29572-0
Online ISBN: 978-3-031-29573-7
eBook Packages: Computer ScienceComputer Science (R0)