Abstract
High-resolution simulations of particle-laden flows are computationally limited to a scale of thousands of particles due to the complex interactions between particles and fluid. Some approaches to increase the number of particles in such simulations require information about the fluid-induced force on a particle, which is a major challenge in this research area. In this paper, we present an approach to develop symbolic models for the fluid-induced force. We use a graph network as inductive bias to model the underlying pairwise particle interactions. The internal parts of the network are then replaced by symbolic models using a genetic programming algorithm. We include prior problem knowledge in our algorithm. The resulting equations show an accuracy in the same order of magnitude as state-of-the-art approaches for different benchmark datasets. They are interpretable and deliver important building blocks. Our approach is a promising alternative to “black-box” models from the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akiki, G., Moore, W., Balachandar, S.: Pairwise-interaction extended point-particle model for particle-laden flows. J. Comput. Phys. 351, 329–357 (2017)
Anderson, T.B., Jackson, R.O.Y.: A fluid mechanical description of fluidized beds. I EC Fundam. 6(4), 524–539 (1967)
Balachandar, S., Moore, W.C., Akiki, G., Liu, K.: Toward particle-resolved accuracy in Euler-Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theoret. Comput. Fluid Dyn. 34(4), 401–428 (2020)
Beetham, S., Capecelatro, J.: Multiphase turbulence modeling using sparse regression and gene expression programming (2021). https://arxiv.org/abs/2106.10397
Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic regression that scales. In: International Conference on Machine Learning, pp. 936–945 (2021)
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)
Capecelatro, J., Desjardins, O.: An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 1–31 (2013)
Cortez, R.: The method of regularized stokeslets. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001)
Cranmer, M.: Pysr: Fast & parallelized symbolic regression in python/julia (2020). https://doi.org/10.5281/zenodo.4041459
Cranmer, M., et al.: Discovering symbolic models from deep learning with inductive biases. In: NeurIPS 2020 (2020)
Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428 (2019)
Kaptanoglu, A.A., et al.: PySINDy: a comprehensive python package for robust sparse system identification. J. Open Source Softw. 7(69), 3994 (2022)
Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1069–1076 (1999)
Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–396 (2010). https://doi.org/10.1007/s10710-010-9109-y
Moore, W.C., Balachandar, S.: Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes. Phys. Rev. Fluids 4, 114301 (2019)
Moore, W., Balachandar, S., Akiki, G.: A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 385, 187–208 (2019)
Rackauckas, C., et al.: Universal differential equations for scientific machine learning (2020). https://doi.org/10.48550/arXiv.2001.04385v4
Ratle, A., Sebag, M.: Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in mechanics. Appl. Soft Comput. 1(1), 105–118 (2001)
Reuter, J., Cendrollu, M., Evrard, F., Mostaghim, S., van Wachem, B.: Towards improving simulations of flows around spherical particles using genetic programming. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022)
Richardson, J.F., Zaki, W.N.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3(2), 65–73 (1954)
Ross, A.S., Li, Z., Perezhogin, P., Fernandez-Granda, C., Zanna, L.: Benchmarking of machine learning ocean subgrid parameterizations in an idealized model. In: Earth and Space Science Open Archive, p. 43 (2022)
Schiller, L., Naumann, A.: über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Zeitschrift des Vereines Deutscher Ingenieure 77, 318–320 (1933)
Schneiders, L., Meinke, M., Schröder, W.: Direct particle–fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188–227 (2017)
Seyed-Ahmadi, A., Wachs, A.: Microstructure-informed probability-driven point-particle model for hydrodynamic forces and torques in particle-laden flows. J. Fluid Mech. 900, A21 (2020)
Seyed-Ahmadi, A., Wachs, A.: Physics-inspired architecture for neural network modeling of forces and torques in particle-laden flows. Comput. Fluids 238, 105379 (2022)
Tenneti, S., Garg, R., Subramaniam, S.: Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 37(9), 1072–1092 (2011)
Udrescu, S.M., Tegmark, M.: AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6(16), eaay2631 (2020)
Uhlmann, M., Chouippe, A.: Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence. J. Fluid Mech. 812, 991–1023 (2017)
Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software using strongly-typed genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, p. 1925–1932 (2006)
Werner, M., Junginger, A., Hennig, P., Martius, G.: Informed equation learning. arXiv preprint arXiv:2105.06331 (2021)
Zille, H., Evrard, F., Reuter, J., Mostaghim, S., van Wachem, B.: Assessment of multi-objective and coevolutionary genetic programming for predicting the stokes flow around a sphere. In: 14th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Reuter, J., Elmestikawy, H., Evrard, F., Mostaghim, S., van Wachem, B. (2023). Graph Networks as Inductive Bias for Genetic Programming: Symbolic Models for Particle-Laden Flows. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-29573-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29572-0
Online ISBN: 978-3-031-29573-7
eBook Packages: Computer ScienceComputer Science (R0)