Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Learning via Graph Convolutional Network for Stock Trend Prediction

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 661))

  • 525 Accesses

Abstract

Stock trend prediction has received a significant amount of attention in recent years. Existing methods could not exploit the peculiar trends for prediction, which are valuable in rising-falling trend analysis for short-term or long-term investments. In this paper, we propose an integrated model that can discover peculiar trend patterns for stock trend prediction. Our proposed model is mainly divided into two parts: the clustering and prediction processes. In the clustering process, we use a Graph Convolutional Network (GCN) model to explore the trend patterns groups from a set of subsequences of time series. In the prediction process, an Long Short-term Memory (LSTM) model will be trained based on the discovered patterns for predicting future stock trends. Experimental results on real-world financial datasets demonstrate that our model yields better performance in terms of stock trend prediction, and outperforms state-of-the-art forecasting models for long-term investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Abonyi, J., Feil, B., Nemeth, S., Arva, P.: Modified gath-geva clustering for fuzzy segmentation of multivariate time-series. Fuzzy Sets Syst. 149, 39–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfke, D., Stoll, M.: Semi-supervised classification on non-sparse graphs using low-rank graph convolutional networks. arXiv preprint 1905, 10224 (2019)

    Google Scholar 

  3. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  4. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  5. Chen, M.Y., Liao, C.H., Hsieh, R.P.: Modeling public mood and emotion: stock market trend prediction with anticipatory computing approach. computers in human behavior. Comput. Human Behav. 101, 402–408 (2019)

    Google Scholar 

  6. Chen, W., Jiang, M., Zhang, W.G., Chen, Z.: A novel graph convolutional feature based convolutional neural network for stock trend prediction. Inform. Sci. 556, 67–94 (2021)

    Article  MathSciNet  Google Scholar 

  7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. NIPS 29 (2016)

    Google Scholar 

  8. Fu, S., Liu, W., Tao, D., Zhou, Y., Nie, L.: Hesgcn: Hessian graph convolutional networks for semi-supervised classification. Inform. Sci. 514, 484–498 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan, X., Huang, C., Liu, G., Meng, X., Liu, Q.: Mapping rice cropping systems in vietnam using an NDVI-based time-series similarity measurement based on DTW distance. Remote Sensing 8, 19 (2016)

    Article  Google Scholar 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  11. Hao, Y., Gao, Q.: Predicting the trend of stock market index using the hybrid neural network based on multiple time scale feature learning. Appl. Sci. 10, 3961 (2020)

    Article  Google Scholar 

  12. Idrees, S.M., Alam, M.A., Agarwal, P.: A prediction approach for stock market volatility based on time series data. IEEE Access 7, 17287–17298 (2019)

    Article  Google Scholar 

  13. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  14. Johansen, A., Sornette, D.: Evaluation of the quantitative prediction of a trend reversal on the japanese stock market in 1999. Int. J. Modern Phys. (C) 11, 359–364 (2000)

    Article  Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Lee, M.C.: Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst. Appl. 36, 10896–10904 (2009)

    Article  Google Scholar 

  17. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: AAAI. vol. 32 (2018)

    Google Scholar 

  18. Li, S., Li, W.T., Wang, W.: Co-gcn for multi-view semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 4691–4698 (2020)

    Google Scholar 

  19. Liang, Q., Rong, W., Zhang, J., Liu, J., Xiong, Z.: Restricted boltzmann machine based stock market trend prediction. In: IJCNN, pp. 1380–1387 (2017)

    Google Scholar 

  20. Lin, T., Guo, T., Aberer, K.: Hybrid neural networks for learning the trend in time series. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 2273–2279. No. CONF (2017)

    Google Scholar 

  21. Lin, Y., Meng, Y., Sun, X., Han, Q., Kuang, K., Li, J., Wu, F.: Bertgcn: Transductive text classification by combining gcn and bert. arXiv preprint arXiv:2105.05727 (2021)

  22. Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., Cheng, K.T.: How do adam and training strategies help bnns optimization. In: International Conference on Machine Learning, pp. 6936–6946. PMLR (2021)

    Google Scholar 

  23. Livieris, I.E., Pintelas, E., Pintelas, P.: A CNN-LSTM model for gold price time-series forecasting. Neural Comput. Appl. 32, 17351–17360 (2020)

    Article  Google Scholar 

  24. Paparrizos, J., Gravano, L.: k-shape: Efficient and accurate clustering of time series. In: SIGMOD, pp. 1855–1870 (2015)

    Google Scholar 

  25. Rini, D., Novianti, P., Fransiska, H.: Internal cluster validation on earthquake data in the province of bengkulu. In: IOP Conference Series: Materials Science and Engineering, vol. 335, p. 012048. IOP Publishing (2018)

    Google Scholar 

  26. Roondiwala, M., Patel, H., Varma, S.: Predicting stock prices using LSTM. IJSR 6, 1754–1756 (2017)

    Google Scholar 

  27. Sezer, O.B., Ozbayoglu, A.M.: Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Appl. Soft Comput. 70, 525–538 (2018)

    Article  Google Scholar 

  28. Shephard, N., Pitt, M.K.: Likelihood analysis of non-gaussian measurement time series. Biometrika 84, 653–667 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  30. Wang, Z., Zheng, L., Li, Y., Wang, S.: Linkage based face clustering via graph convolution network. In: CVPR, pp. 1117–1125 (2019)

    Google Scholar 

  31. Yao, S., Luo, L., Peng, H.: High-frequency stock trend forecast using LSTM model. In: ICCSE, pp. 1–4 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengrui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, M., Chen, R., Zhang, J., Wang, S. (2023). Unsupervised Learning via Graph Convolutional Network for Stock Trend Prediction. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-031-29056-5_32

Download citation

Publish with us

Policies and ethics